Русская версия English version

The problem of verifying electric power system simulation tools and its solution concept

A.A. Suvorov, A.S. Gusev, A.O. Sulaymanov, M.V. Andreev

Vestnik IGEU, 2017 issue 1, pp. 11—23

Download PDF

Abstract in English: 

Background: The urgent problems of design, research and exploitation of electric power systems are solved by using complete and reliable information about the processes in the equipment and power system as a whole. In view of specific operating conditions of power systems, such information is mainly obtained by mathematical modeling. However, the dominating purely numerical models and different software systems for their realization do not always provide complete and reliable data as the modelling techniques often have to be simplified and used with considerable restrictions. All this makes it especially important and necessary to verify these tools.

Materials and Methods: The developed hybrid tool of power system simulation has been verified as a reliable data source. The tool employs the continuous implicit integration method to accurately solve mathematical models of the equipment and power system as a whole at the analog level; reproduces all kinds of lateral and transverse commutations and natural node formation in modeled three-phase circuits at the physical level;  and sets the parameters and controls modeling as a whole at the digital level.

Results: The paper identifies and analyses the reasons why digital tools of power system simulation produce incomplete and unreliable data, in particular those based on numerical integration of rigid nonlinear systems of differential high-dimension equations. A concept has been developed to verify power system simulation tools by using a hybrid modeling tool that enables verification by data about quasi-steady-state-modes obtained from operational and informational systems.

Conclusions: The one-sided numerical approach to simulation cannot solve the verification problem due to the absence of necessary field data about the relevant modes and processes. The only way to solve the problem is to use a set of modeling tools to obtain the necessary volume of data equivalent to the field data.

Key words: electric power systems, real time, theory of discretization techniques, ordinary differential equations, verification, multiprocessor hybrid system, operating and informational system.

References in English: 
  1. Kuzmichev, V.A., Konovalova, E.V., Sakharov, S.N., Zakharenkov, A.Yu. Retrospektivnyy analiz raboty ustroystv RZA v ENES [Retrospective analysis of relay protection and automation devices in the Unified National Power Grid]. Releynaya zashchita i avtomatizatsiya, 2012, no. 01(06), pp. 60–65.
  2. Voropai, N.I., Saratova, N.E. Analiz statistiki otkazov RZA na mikroprotsessornoy baze s tochki zreniya ikh ucheta pri modelirovanii kaskadnykh avariy [Statistical analysis of microprocessor-based relay protection and automation device failures in terms of their account in the modeling of cascade failures]. Doklady III Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Energosistema: upravlenie, konkurentsiya, obrazovanie» [Proceedings of the Third International Conference «Power system: management, competition, education»]. Ekaterinburg, 2008, pp. 203–207.
  3.  Atputharajah, A., Saha, T. Power system blackouts –Literature review: proceedings of 4-th Int. Conf. Ind. Inf. Syst. Sri Lanka, 2009, рр. 460–465.
  4.  Horowitz, S., Phadke, A. Blackouts and relaying considerations. Relaying philosophies and the future of relay systems. IEEE Power Energy Mag., 2006, vol. 4, issue 5, pp. 60–67.
  5.  Kholl, D., Uatt, D. Sovremennye chislennye metody resheniya obyknovennykh differentsial'nykh uravneniy [Modern Numerical Methods for Ordinary Differential Equations]. Moscow, Mir, 1979. 312 p.
  6.  Babushka, I., Vitasek, E., Prager, M. Chislennye protsessy resheniya differentsial'nykh uravneniy [Numerical processes of solving differential equations]. Moscow, Mir, 1969. 368 p.
  7.  Verzhbitsky, V.M. Chislennye metody (matematicheskiy analiz i obyknovennye differentsial'nye uravneniya) [Numerical methods (mathematical analysis and ordinary differential equations)]. Moscow, Vysshaya shkola, 2001. 382 p.
  8.  Kheming, R.V. Chislennye metody [Numerical methods]. Moscow, Nauka, 1968. 400 p.
  9.  Khayrer, E., Vanner, G. Reshenie obyknovennykh differentsial'nykh uravneniy. Zhestkie i algebro-differentsial'nye zadachi [Solving ordinary differential equations: Stiff and differential-algebraic problems]. Moscow, Mir, 1999. 612 p.
  10. Rakitsky, Yu.V., Ustinov, S.M., Chernorutsky, I.G. Chislennye metody resheniya zhestkikh sistem  [Numerical methods of solving stiff systems]. Moscow, Nauka, 1979. 208 p.
  11. Dahlquist, G. Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand, 1956, vol. 4, pp. 33–53.
  12. Lambert, J. Computational methods in ordinary differential equations. New York, John Wiley and Sons, 1973. 288 p.
  13. Pogosyan, T.A. Pogreshnost' raschetov elektromekhanicheskikh perekhodnykh protsessov v elektricheskikh sistemakh [Error of calculations of electromechanical transients in electrical systems]. Elektrichestvo, 1984, no. 3, pp. 54–56.
  14. Venikov, V.A. Perekhodnye elektromekhanicheskie protsessy v elektricheskikh sistemakh [Electromechanical transients in electrical systems]. Moscow, Vysshaya shkola, 1985. 536 p.
  15. Western systems Coordinating Council (WSCC). Disturbance Report for the Power System Outage that Occurred on the Western Interconnection on August 10th, 1996 at 1548 PAST. Salt Lake City: The Council, 1996. 120 p.
  16. Kosterev, D., Taylor, C., Mittelstadt, W. Model Validation for the August 10, 1996 WSCC System Outage. IEEE Transactions on Power Systems, 1999, vol. 14, no. 3, pp. 967–979.
  17. Gerasimov, A.S., Esipovich, A.Kh., Smirnov, A.N. Ob opyte verifikatsii tsifrovykh i fizicheskikh modeley energosistem [On the experience of verifying digital and physical models of power systems]. Elektricheskie stantsii, 2010, no. 11, pp. 11–19.
  18. Ayuyev, B.I., Gerasimov, A.S., Esipovich, A.Kh., Kulikov, Yu.A. Verifikatsiya tsifrovykh modeley EES/OES [Verification of digital models of the Unified Power Grid / Interconnected Power Grid]. Elektrichestvo, 2008, no. 5, pp. 2–7.
  19. Kopse, D., Rudez, U., Mihalic, R. Applying a wide-area measurement system to validate the dynamic model of a part of European power system. Electric Power Systems Research, 2015, vol. 119, pp. 1–10.
  20. Gusev, A.S., Khrushchev, Yu.V., Gurin, S.V. Modeli sinkhronnykh i asinkhronnykh elektricheskikh mashin dlya vserezhimnogo modelirovaniya elektroenergeticheskikh sistem [Models of synchronous and asynchronous electrical machines for all-regime electric power system simulation]. Izvestiya vuzov. Elektromekhanika, 2009, no. 6, pp. 14–22.
  21. Sulaimanov, A.O., Borovikov, Yu.S., Gusev, A.S. Gibridnoe modelirovanie linii elektroperedachi s raspredelennymi parametrami s uchetom elektromagnitnogo vzaimovliyaniya [Hybrid simulation of distributed parameter transmission lines accounting for mutual electromagnetic influence]. Elektrichestvo, 2013, no. 3, pp. 63–69.
  22. Gusev, A.S., Suvorov, A.A., Sulaimanov, A.O. Programmno-tekhnicheskie sredstva vserezhimnogo modelirovaniya v real'nom vremeni upravlyaemykh shuntiruyushchikh reaktorov v elektroenergeticheskikh sistemakh [Software and hardware tools of real-time comprehensive simulation of controlled shunt reactors in electric power systems]. Sovremennye problemy nauki i obrazovaniya, 2015, no. 1. Available at: http://www.science-education.ru/125-19879.
  23. Gruzdev, I.A., Kadomskaya, K.P., Kuchumov, L.A. Primenenie analogovykh vychislitel'nykh mashin v energeticheskikh sistemakh. Metody issledovaniya perekhodnykh protsessov [Using analog computing devices in electric power systems. Methods of transient process research]. Moscow, Energiya, 1970. 400 p.
  24. Karayev, R.I. Perekhodnye protsessy v liniyakh bol'shoy protyazhennosti [Transient processes in long power transmission lines]. Moscow, Energiya, 1978. 191 p.
  25. Gusev, A.S. Kontseptsiya i sredstva vserezhimnogo modelirovaniya v real'nom vremeni elektroenergeticheskikh sistem [Concept and tools of real-time comprehensive simulation of electric power systems]. Izvestiya vuzov. Problemy energetiki, 2008, no. 9.10/1, pp. 164–170.
  26. Borovikov, Yu.S., Gusev, A.S., Sulaimanov, A.O.  Printsipy postroeniya sredstv vserezhimnogo modelirovaniya v real'nom vremeni energosistem [Principles of developing real-time comprehensive power system simulation tools]. Elektrichestvo, 2012, no. 6, pp. 10–13.
  27. Borovikov, Yu.S., Gusev, A.S., Sulaimanov, A.O., Andreyev, M.V. Vserezhimnoe modelirovanie v real'nom vremeni perenapryazheniy v elektroenergeticheskikh sistemakh [Comprehensive real-time overvoltage simulation in electric power systems]. Avtomatizatsiya v promyshlennosti, 2014, no. 7, pp. 17–21.
  28. Borovikov, Yu.S., Sulaimanov, A.O., Gusev, A.S. Povyshenie tochnosti modelirovaniya protsessov samozapuska elektrodvigateley dlya releynoy zashchity i avtomatiki [Increasing the accuracy of self-starting processes simulation in electric machines for relay protection and automation]. Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika, 2011, no. 6, pp. 77–80.
  29. Andreyev, M.V., Borovikov, Yu.S., Gusev, A.S., Ruban, N.Y., Sulaimanov, A.O., Suvorov, A.A., Ufa, R.A. Issledovanie vliyaniya upravlyaemykh shuntiruyushchikh reaktorov na rezhimy raboty sistemy elektrosnabzheniya El'ginskogo gornodobyvayushchego kombinata [Study of the influence of controlled shunt reactors on the regimes of power supply system of Elga coal mining complex]. Izvestiya Tomskogo politekhnicheskogo universiteta, 2016, vol. 327, no. 7, pp. 46–57.
Ключевые слова на русском языке: 
электроэнергетические системы, реальное время, теория методов дискретизации, обыкновенные дифференциальные уравнения, верификация, мультипроцессорная гибридная система, оперативно-информационный комплекс
Ключевые слова на английском языке: 
electric power systems, real time, theory of discretization techniques, ordinary differential equations, verification, multiprocessor hybrid system, operating and informational system
The DOI index: 
10.17588/2072-2672.2017.1.011-023
Downloads count: 
47