Русская версия English version

Research into primary effect of dissolved oxygen desorption in superheated water deaerators

Y.E. Barochkin, V.P. Zhukov, G.V. Leduhovsky, E.V. Barochkin

Vestnik IGEU, 2016 issue 5, pp. 5—10

Download PDF

Abstract in English: 

Background: A rapid pressure decrease in a deaerator may result in instant boiling of water with simultaneous formation of steam. This process is accompanied by desorption of oxygen dissolved in water. In the literature, this phenomenon is called primary deaeration effect. This effect is usually taken into account when calculating desorption by statistical dependences obtained from experimental studies. The disadvantages of this method include the applicability of the obtained results only to the investigated deaeration conditions. Therefore, an attempt to find theoretical approaches to taking account of the primary effect influence on desorption of the dissolved oxygen in superheated water deaerators is an urgent research direction.

Methods and materials: Theoretical consideration of the primary effect of deaeration employs the thermodynamic relations to describe the process of phase transition in a superheated liquid, and the results of deaeration experimental studies to test the obtained relations.

Results: In order to describe the primary effect of dissolved oxygen desorption, the authors obtained a theoretical dependence that can estimate the oxygen residual content in deaerated water. It is also shown that there is a qualitative agreement between the obtained results and experimental data for the centrifugal-vortex and drip deaeration devices.

Conclusions: Based on the results of the primary effect calculation and their comparison with the experimental results, the authors show the decisive influence of this effect on the process of dissolved oxygen desorption in a vacuum deaerator, which enables obtaining more exact solutions while modeling and improving the structures and operating modes of these installations.

Key words: thermal deaerator, vacuum deaeration, primary effect, superheated liquid, desorption of dissolved oxygen, centrifugal-vortex deaerator, drip deaerator, mathematical model, phase transition, thermodynamics.

References in English: 
  1. Sharapov, V.I., Tsyura, D.V. Termicheskie deaeratory [Deaerating heaters]. Ul'yanovsk, 2003. 560 р.
  2.  Sharapov, V.I. Podgotovka podpitochnoy vody sistem teplosnabzheniya s primeneniem vakuumnykh deaeratorov [Preparation of feed water for heat supply systems by using vacuum deaerators]. Moscow, Energoatomizdat, 1996. 176 p.
  3.  Roslyakov, A.N., Ledukhovskiy, G.V., Zhu-kov, V.P., Barochkin, E.V., Zimin, B.A., Vinogradov, V.N. Vestnik IGEU, 2014, issue 4, рр. 11–16.
  4.  Zimin, B.A. Deaerator [Deaerator]. Patent RF, no. 2131555, 1999.
  5.  Oliker, I.I. Termicheskaya deaeratsiya vody v otopitel'no-proizvodstvennykh kotel'nykh i teplovykh setyakh [Thermal water deaeration in heating and industrial boilers and heat networks]. Leningrad, Stroyizdat, 1972. 137 p.
  6.  Oliker, I.I., Permyakov, V.A. Termicheskaya deaeratsiya vody na teplovykh elektrostantsiyakh [Thermal deaeration of water at heat power stations]. Leningrad, Energiya, 1971. 185 p.
  7.  Zel'dovich, Ya.B. Izbrannye trudy. Khimicheskaya fizika i gidrodinamika [Selected works. Chemical physics and hydrodynamics]. Moscow, Nauka, 1984. 374 p.
  8.  Konovalov, V.I. Tekhnicheskaya termodinamika [Technical thermodynamics]. Ivanovo, 2005. 620 p.
  9.  Kasatkin, A.G. Osnovnye protsessy i apparaty khimicheskoy tekhnologii [Basic processes and devices of chemical technology]. Moscow, Khimiya, 1971. 784 p.
  10. Sharapov, V.I., Pazushkina, O.V., Kudryavtseva, E.V. Energy-Effective Method for Low-Temperature Deaeration of Make-up Water on the Heating Supply System of Heat Power Plants. Thermal Engineering, 2016, vol. 63, no. 1, pp. 687–690.
  11. Sharapov, V.I. Improvement of Water Thermal Deaeration Technologies. Thermal Engineering, 2006, vol. 53, no. 5, pp. 390–394.




Ключевые слова на русском языке: 
термический деаэратор, вакуумная деаэрация, начальный эффект, перегретая жидкость, десорбция растворенного кислорода, центробежно-вихревой деаэратор, капельный деаэратор, математическая модель, фазовый переход, термодинамика
Ключевые слова на английском языке: 
thermal deaerator, vacuum deaeration, primary effect, superheated liquid, desorption of dissolved oxygen, centrifugal-vortex deaerator, drip deaerator, mathematical model, phase transition, thermodynamics
The DOI index: 
Downloads count: