Русская версия English version

Mathematical model of dynamics of two-inductor synchronous impact electromagnetic machines with free head running-out

L.A. Neyman, V.Yu. Neyman

Vestnik IGEU, 2016 issue 5, pp. 32—40

Download PDF

Abstract in English: 

Background: Mechanisms and devices with reciprocation electromagnetic drives are widely used in a lot of industrial technological processes. As it is necessary now to meet energy saving requirements, the paper is essentially focused on low-frequency synchronous impact electromagnetic machines. Their impact frequency is equal to or multiple of single-phase power supply frequency. The timeliness of such studies is explained by the necessity to develop a mathematical model that would simulate the dynamics of the two-inductor synchronous impact electromagnetic machine with head free running-out and the new operating cycle and control method based on it.

Materials and methods: The object of the study is a dynamic model of the electromagnetic impact unit. The model includes a multi-mass oscillating system with spring linkages excited by the periodic magnetic field of the two-inductor system. The model is based on the Lagrange differential equations of system electrical balance and mechanical interaction between reciprocating inertial masses.

Results: We have developed a model of dynamics of the two-inductor synchronous impact electromagnetic machine with free head running-out. The model allows simulating the interconnected electromechanical processes taking account of the non-linear characteristics of magnetic materials, inertial masses mobility degree, spring linkage properties and power loss. We have also suggested a calculation algorithm and described an example of the model numerical implemention in Matlab Simulink.

Conclusion: The created model enables comprehensive analysis of the operating processes of electromagnetic impact units in transient and quasi-stationary modes for the improvement of their characteristics. The mathematical simulation methods have confirmed the efficiency of the new operating cycle in improving electromagnetic compatibility of a power source and the electromagnetic impact unit.

Key words:  mathematical model, electromagnetic impact machine, mechanical oscillatory system, spring linkages, Lagrange method, power loss, impact energy.

References in English: 

1. Ryashentsev, N.P., Ugarov, G.G., L'vitsin, A.V. Elektromagnitnye pressy [Electromagnetic presses]. Novosibirsk, Nauka, Sibirskoe otdelenie, 1989. 216 p.

2. Ivashin, V.V., Kudinov, A.K., Pevchev, V.P. Elektromagnitnye privoda dlya impul'snykh i vibroimpul'snykh tekhnologiy [Electromagnetic drives for pulse and vibropulse technologies]. Izvestiya vuzov. Elektromekhanika, 2012, no. 1, pp. 72–75.

3. Usanov, K.M., Ugarov, G.G., Moshkin, V.I. Lineynyy impul'snyy elektromagnitnyy privod mashin s avtonomnym pitaniem [Linear pulse electromagnetic drive of self-powered machines]. Kurgan, Izdatel'stvo Kurganskogo gosuniversiteta, 2006. 284 p.

4. Usanov, K.M., Kargin, V.A. Silovaya elektromagnitnaya impul'snaya sistema dlya pogruzheniya sterzhnevykh elementov v grunt [The power electromagnetic pulse system for immersing rod elements in soil]. Vestnik Saratovskogo gosagrouniversiteta, 2005, no. 3, pp. 59–61.

5. Pevchev, V.P., Ivashin, V.V. Proektirovanie moshchnykh korotkokhodovykh impul'snykh elektromagnitnykh dvigateley [Design of powerful short-run pulse electromagnetic motors]. Tol'yati, Izdatel'stvo TGU, 2012. 142 p.

6. Ugarov, G.G., Moshkin, V.I Perspektivy razvitiya silovykh elektromagnitnykh impul'snykh sistem [Prospects for the development of power electromagnetic pulse systems]. Vestnik Kurganskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki, 2013, no. 29, pp. 88–90.

7. Moshkin, V.I. Sravnenie magnitnykh tsiklov impul'snogo lineynogo elektromagnitnogo dvigatelya s uchetom moshchnosti poter' v ego obmotke [Comparison of magnetic cycles of linear pulse electromagnetic motors taking account of the winding power loss]. Izvestiya Tomskogo politekhnicheskogo universiteta, 2012, no. 4, vol. 321, pp. 93–96.

8. Moshkin, V.I., Ugarov, G.G. Energeticheskaya i dinamicheskaya effektivnost' odnoobmotochnykh lineynykh elektromagnitnykh dvigateley s vozvratnoy pruzhinoy [Energy and dynamic efficiency of single-winding linear electromagnetic motors with spring return]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2012, no. 2 (66), pp. 130–135.

9. Ryashentsev, N.P., Ryashentsev, V.N. Elektromagnitnyy privod lineynykh mashin [Electromagnetic linear actuator machines]. Novosibirsk, Nauka, 1985. 153 p.

10. Usanov, K.M., Kargin, V.A., Volgin, A.V. Otsenka effektivnosti energopreobrazovaniy v elektromagnitnoy udarnoy mashine s uprugim vozvratnym elementom [Evaluating the effectiveness of energy conversion in the electromagnetic shock machines with a resilient return element]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2008, no. 1, pp. 86–87.

11. Pevchev, V.P. The superexcitation and efficiency relation in a short-stroke pulsed electromagnetic motor of a seismic source. Journal of Mining Sсience, 2010, vol. 46, no. 6, pp. 656–665.

12. Tatevosyan, A.A., Tatevosyan, A.S. Raschet optimal'nykh parametrov elektromagnitnogo privoda kolebatel'nogo dvizheniya [Calculation of the optimal parameters of the vibrational motion electromagnetic actuator]. Izvestiya Tomskogo politekhnicheskogo universiteta, 2014, vol. 325, no. 4, pp. 121–132.

13. Neyman, L.A., Neyman, V.Yu. Matematicheskaya model' elektromekhanicheskoy sistemy kolebatel'nogo dvizheniya s uprugimi svyazyami [Mathematical model of electromechanical system with vibrational motion of elastic connections]. Vestnik IGEU, 2015, issue 6, pp. 35–40.

14. Ismagilov, F.R., Sattarov, R.R., Gumerova, M.B. Matematicheskoe modelirovanie dinamicheskikh rezhimov elektromagnitnykh dempfiruyushchikh elementov [Mathematical modeling of dynamic modes of electromagnetic damping elements]. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2010, vol. 14, no. 5(40), pp. 86–90.

15. Zhuravlyov, Y.N., Matcevich, S.G., Kochevin, F.G. Low-frequency electrodynamic vibrator with magnetically suspended movable part. Proc. of the 4th Intern. Conf. on Motion and Vibration Control, 1998, vol. 3, pp. 1063–1067.

16. Sattarov, R.R., Ismagilov, F.R. Periodicheskie rezhimy v elektromagnitnykh vibratsionnykh preobrazovatelyakh [Periodic modes in the electromagnetic vibration converters]. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2010, vol. 14, no. 1(36), pp. 50–55.

17. Sattarov, R.R., Ismagilov, F.R. Issledovanie vibroudarnogo rezhima v elektromekhanicheskikh reaktivnykh preobrazovatelyakh [Research into vibro-impact mode of electromechanical reactive converters]. Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika, 2010, no. 2, pp. 23–27.

18. Ryashentsev, N.P., Timoshenko, E.M., Frolov, A.V. Teoriya, raschet i konstruirovanie elek-tromagnitnykh mashin udarnogo deystviya [Theory, calculation and design of electromagnetic percussion machines]. Novosibirsk, Nauka, Sibirskoe otdelenie, 1970. 260 p.

19. Ryashentsev, N.P., Ugarov, G.G., Fedonin, V.N., Malov, A.T. Elektroprivod s lineynymi elektromagnitnymi dvigatelyami [Electric linear electromagnetic motors]. Novosibirsk, Nauka, 1981. 150 p.

20. Smelyagin, A.I. Sintez i issledovanie mashin i mekhanizmov s elektromagnitnym privodom [Synthesis and study of machines and mechanisms with electromagnetic actuators]. Novosibirsk, Izdatel'stvo Novosibirskogo universiteta, 1991. 248 p.

21. Neyman, L.A., Neyman, V.Yu., Skotnikov, A.A. Sinkhronnyy elektromagnitnyy dvigatel' vozvratno-postupatel'nogo dvizheniya [Synchronous electromagnetic reciprocation motors]. Patent RF, no. 2496214, 2013.

22. Neyman, L.A., Neyman, V.Yu. Rabochiy tsikl dvukhkatushechnoy sinkhronnoy elektromagnitnoy mashiny so svobodnym vybegom boyka [Operation cycle of two-inductor synchronous electromagnetic machines with free head running-out]. Izvestiya vuzov. Elektromekhanika, 2013, no. 6, pp. 48–52.

23. Dobronravov, V.V., Nikitin, N.N. Kurs teoreticheskoy mekhaniki [Course of theoretical mechanics]. Moscow, Vysshaya shkola, 1983. 576 p.

24. Chernykh, I.V. Modelirovanie elektrotekhnicheskikh ustroystv v MATLAB, SimPowerSystems i Simulink [Simulation of electrical devices in MATLAB, SimPowerSystems and Simulink]. Moscow, DMK Press; Saint-Petersburg, Piter, 2008. 288 p.

Neyman, L.A., Neyman, V.Yu. Dinamicheskaya model' elektromagnitnogo privoda kolebatel'nogo dvizheniya dlya sistem generirovaniya nizkochastotnykh vibratsiy [Dynamic model of electromagnetic vibration drives for low-frequency vibration generation systems]. Doklady Akademii nauk vysshey shkoly Rossiyskoy Federatsii, 2015,
no. 3(28), pp. 75–87.

26. Bul', O.B. Metody rascheta magnitnykh sistem elektricheskikh apparatov: Magnitnye tsepi, polya i programma FEMM [Methods for calculating magnetic systems of electric devices: magnetic circuits, fields and FEMM program: a study guide]. Moscow, Izdatel'skiy tsentr «Akademiya», 2005. 336 p.

27. Andreeva, E.G., Semina, I.A., Tatevosyan, A.V. Issledovanie polya magnitnoy sistemy otkrytogo tipa s pomoshch'yu programmnogo paketa ANSYS [Investigation of the magnetic field open-type system using ANSYS software package]. Dinamika sistem, mekhanizmov i mashin, 2014, no. 1, pp. 173–175.

28. Tatevosyan, A.A., Tatevosyan, A.S. Raschet elektricheskikh i magnitnykh poley metodom konechnykh elementov s primeneniem kompleksa programm ELCUT [Calculation of electric and magnetic fields by the finite-element method in ELCUT software package]. Omsk, Izdatel'stvo OmGTU, 2015. 96 р.

29. Neyman, L.A., Neyman, V.Yu. Modelirovanie protsessov v elektromagnitnom vibratsionnom preobrazovatele s poteryami energii v magnitoprovode [Modelling of processes in the electromagnetic vibration transducer with energy losses in the yoke]. Doklady Tomskogo gosudarstvennogo universiteta sistem upravlenija i radiojelektroniki, 2016, vol. 1, no. 1, pp. 73–78.

30. Neyman, L.A., Neyman, V.Yu. Modelirovanie dinamicheskikh protsessov v elektromagnitnykh preobrazovatelyakh energii dlya sistem generirovaniya silovykh vozdeystviy i nizkochastotnykh vibratsiy [Simulation of dynamic processes in the electromagnetic energy converters for force effect and low-frequency vibration generation systems]. Izvestiya Tomskogo politekhnicheskogo universiteta, 2015, vol. 326, no. 4, pp. 154–162.

31. Neyman, L.A., Neyman, V.Yu. Novye konstruktivnye resheniya problemy tochnoy sinkhronizatsii vozvratno-postupatel'nogo dvizheniya boyka neupravlyaemoy elektromagnitnoy mashiny udarnogo deystviya [New design solutions to the problem of precise timing of the reciprocating striker movement of the uncontrolled electromagnetic impact machine]. Aktual'nye problemy v mashinostroenii, 2015, no. 2, pp. 280–285.

Ключевые слова на русском языке: 
математическая модель, электромагнитная машина ударного действия, механическая колебательная система, упругие связи, метод Лагранжа, потери энергии, энергия удара
Ключевые слова на английском языке: 
mathematical model, electromagnetic impact machine, mechanical oscillatory system, spring linkages, Lagrange method, power loss, impact energy
The DOI index: 
10.17588/2072-2672.2016.5.032-040
Downloads count: 
31