Русская версия English version

Resources of voltage stabilization of a synchronous generator by a multiparametric excitation controller

D.V. Armeev, A.V. Chekhonadskikh, G.B. Nesterenko

Vestnik IGEU, 2017 issue 1, pp. 24—32

Download PDF

Abstract in English: 

Background: The wider use of new types of generation and distribution systems in the power industry, on the one hand, and the expansion of technical control options thanks to power electronics devices, on the other hand, stimulate the design of control algorithms which ensure stable operation of power generators in local networks with their specific conditions and limitations. The optimal settings of an automatic excitation controller, implementing PID or PDD2 control, remain the topical area of control theory. However, the problem of designing control systems of optimal stability with more than three control parameters is not studied well yet due to the extreme complexity of optimization problems.

Materials and methods: The nonlinear model of a synchronous generator with an automatic excitation controller, implementing PIDD2 control, was constructed in Matlab (Simulink) and linearized relative to the current values of the steady-state mode. The pole locations of the linear automatic control system ensuring the optimal stability were found algebraically by analyzing critical root diagrams, which allowed finding the optimal and suboptimal pole locations without unreliable and cumbersome numerical procedures. Transient control and qualitative estimation of typical perturbation suppression were carried out in the non-linear model.

Results: Extreme pole locations have been found for a four-parameter PIDD2 system with almost unlimited relative stability, which is achieved by setting excessive control parameter values. By fixing the proportional or the integral coefficient of optimization control by three control parameters the authors managed to achieve a satisfactory time of disturbance suppression without overshooting.

Conclusions: PIDD2-control setting enables reaching practically any stability degree of the linearized model of the generator with an automatic excitement controller through an appropriate control coefficient increase. It seems expedient to search for the optimal regulator by setting an acceptable value of one of the coefficients. This approach may be promising for stabilizing by the same method two- and three-generator systems with a multiparameter excitement controller in local power supply networks.

Key words: synchronous generator, voltage regulation, steady state mode, static stability, polynomial design, PIDD2 control, optimal pole location, critical root diagrams.

References in English: 

1. Venikov, V.A.  Perekhodnye elektromekhanicheskie protsessy v elektricheskikh sistemakh [Electromechanical transients in electric systems]. Moscow, Vysshaya shkola, 1985. 536 p.

2. Momoh, J. SMART GRID Fundamentals of Design and Analysis. IEEE PRESS. Hoboken, New Jersey, John Wiley & Sons, 2012.

3.  Kassakian, J., Schmalensee, R. The Future of the Electric Grid: An interdisciplinary MIT Study. Technical Report. Massachusetts Institute of Technology, 2011.

4. Demeo, A., Peterson, M.L. Community Smart Grid Utilizing Dynamic Demand Response and Tidal Power for Grid Stabilization. Smart Grid and Renewable Energy, 2013, no. 4, pp. 465–472.

5. Sharaf, A.M., Gandoman, F.H. FACTS Based Stabilization for Smart Grid Applications. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2014, vol. 8, no. 11, pp. 1807–11.

6. Lakshma Naik V. A Comparison Scheme of Dynamic Voltage for Smart Electric Grid Stabilization and Efficient Utilization using FACTS. International Journal of Latest Trends in Engineering and Technology, 2015, vol. 6, issue 2, pp. 353–364.

7. Zhdanov, P.S.  Voprosy ustoychivosti elektricheskikh sistem [Stability problems of electric systems]. Мoscow, Energiya, 1979.

8. Polyak, B.T., Shcherbakov, P.S. Trudnye zadachi lineynoy teorii upravleniya. Nekotorye podkhody k ikh resheniyu [Difficult Problems of Linear Control Theory: Possible Approaches to their Solution]. Avtomatika i telemekhanika, 2005, vol. 66, no. 5, pp. 681–718.

9. Polyak, B.T., Gryazina, E.N. Stability domain in the parameter space: D-decomposition revisited. Automatica, 2006, issue 42, pp.13–26.

10. Datta, A., Ho, M.-T., Bhattacharyya, S.R. Structure and Synthesis of PID Controllers. N.Y., Springer, 2000.

11.  Anisimov, A.A., Tararykin, S.V., Apolonsky, V.V. Parametricheskaya optimizatsiya elektromekhanicheskikh sistem s regulyatorami i nablyudatelyami sostoyaniya [Parametrical optimization of regulators and state observers in electromechanical systems]. Vestnik IGEU, 2016, issue 2, pp. 21–26.

12. Chekhonadskikh, A.V. O stupenchato-differentsial'noy optimizatsii korney kharakteristicheskogo mnogochlena SAU [On stage-differential optimization of control system characteristic roots]. Nauchnyy vestnik NGTU, 2008, issue 4(33), pp. 205–208.

13. Koryukin, A.N., Chekhonadskikh, A.V. Predel ustoychivosti trekhmassovoy sistemy s regulyatorom 3-go poryadka, ch. 1 [Stability limit of a 3-mass system with a third-order controller, p. 1]. Sbornik nauchnykh trudov NGTU, 2011, no. 4(66), pp. 3–22.

14. Chekhonadskikh, A.V. Ekstremal'nye raspolozheniya polyusov sistem avtomaticheskogo upravleniya s regulyatorom ponizhennogo poryadka [Extreme pole locations in automatic control systems with a reduced-order controller]. Avtomatika i telemekhanika, 2014, no. 10, pp. 6–24.

15. Armeev, D.V., Chekhonadskikh, A.V., Voevoda, A.A. Modal optimization of AVR for synchronous generator using the finite gradient. Proc. International Siberian conference on control and communications (SIBCON–2015), Omsk, 21–23 May, 2015. Omsk, 2015.

16. Shoiko, V.P. Avtomaticheskoe regulirovanie v elektricheskikh sistemakh [Automatic control in electric systems]. Novosibirsk, NGTU, 2012, 195 p.

17. Khrushchev, Yu.V., Zapodovnikov, K.I., Yushkov, A.Yu. Elektromekhanicheskie perekhodnye protsessy v elektroenergeticheskikh sistemakh [Electromechanical transients in electrical power systems]. Tomsk, Izdatel'stvo TPU, 2012.

18. Moskvin, I.A. Kolebatel'naya staticheskaya ustoychivost' elektroenergeticheskoy sistemy [Oscillatory steady state stability of an electrical power system with an interconnection containing controlled series capacitors]. Vestnik IGEU, 2013, issue 5, pp. 46–50.

Ключевые слова на русском языке: 
синхронный генератор, стабилизация напряжения, установившийся режим, статическая устойчивость, полиномиальный синтез, ПИДД<sub>2</sub>-управление, оптимальное расположение полюсов, критические корневые диаграммы
Ключевые слова на английском языке: 
synchronous generator, voltage regulation, steady state mode, static stability, polynomial design, PIDD<sub>2</sub> control, optimal pole location, critical root diagrams
The DOI index: 
10.17588/2072-2672.2017.1.024-032
Downloads count: 
61