Русская версия English version

Modeling and calculation of multi-current heat exchangers

A.E. Barochkin, V.P. Zhukov

Vestnik IGEU, 2017 issue 3, pp. 70—75

Download PDF

Abstract in English: 

Background: It is well known that the counter-flow scheme is more efficient than the direct-flow scheme of heat carrier motion. Earlier, by using the developed model of multi-current heat exchange, we analyzed heat carrier motion schemes in the three-stream heat exchanger. It is now urgent to determine the effective structures of heat carrier flows for heat exchangers with three or more heat carriers for various industrial technologies.

Materials and methods: The model for multi-current heat exchangers was built based on the system of differential equations representing heat balance equations for each heat carrier. The analytical solution to the system of linear differential equations was found using the method of trial functions.

Results: We propose a mathematical description of heat exchangers with four heat carriers with different flow structures. It represents a system of linear differential equations. We have obtained and analyzed the analytical solutions to eight possible schemes of heat carrier motion, and found the most effective flow structure with the minimum heat loss.

Conclusions: The proposed mathematical model is the basis for developing more effective methods of heat transfer organization in technological units for various purposes with an arbitrary number of heat carriers.

Key words: heat transfer, heat carrier flow, direct-flow, counter-flow, multi-current heat exchanger, heat loss, flow structure.

References in English: 

1.   Isachenko, V.P., Osipova, V.A., Sukomel, A.S. Teploperedacha [Heat transfer]. Moscow, Energoatomizdat, 1981. 416 p.

2.   Barochkin, A.E., Zhukov, V.P., Belyakov, A.N. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2011, vol. 54, issue 11, pp. 116–119.

3.   Zhukov, V.P., Barochkin, E.V. Sistemnyy analiz energeticheskikh teplomassoobmennykh ustanovok [System analysis of power heat and mass transfer installations]. Ivanovo, 2009. 176 p.

4. Baranovsky, N.V., Kovalenko, L.M., Yastrebenetsky, A.R. Plastinchatye i spiral'nye teploobmenniki [Plate and spiral heat exchangers]. Moscow, Mashinostroenie, 1973. 288 p.

5.   Hesselgreaves, J.E. Compact Heat Exchangers. Elsevier, 2016. 484 p.

6. Nazmeev, Yu.G., Lavygin, V.M. Teploobmennye apparaty TES [Heat-exchange equipment of heat power plants]. Moscow, Energoatomizdat, 1998. 288 p.

 7.  Aronson, K.E., Blinkov, S.N., Brezgin, V.I. Teploobmenniki energeticheskikh ustanovok [Heat exchange unit of power plants]. Ekaterinburg, Sokrat, 2003. 968 p.

8. Xie, G.N., Sunden, B., Wang, Q.W. Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering,  2008, 28, pp. 895–906.

9.   Vlasov, V.G. Konspekt lektsiy po vysshey matematike [Lectures on higher mathematics]. Moscow, Ayris, 1996. 287 p.

Ключевые слова на русском языке: 
процесс теплопередачи, поток теплоносителей, прямоток, противоток, многопоточный теплообменник, тепловые потери, структура потока
Ключевые слова на английском языке: 
heat transfer, heat carrier flow, direct-flow, counter-flow, multi-current heat exchanger, heat loss, flow structure
The DOI index: 
10.17588/2072-2672.2017.3.070-075
Downloads count: 
16