Русская версия English version

Selection of installation sites and law of control for controlled series compensation devices in order to improve electric power system stability

A.A. Martirosyan, M.V. Zotova, D.N. Kormilicyn

Vestnik IGEU, 2017 issue 4, pp. 30—36

Download PDF

Abstract in English: 

Background: A well-known measure to increase the ultra-high voltage transmission line capacity is the usage of controlled series compensation devices. In addition, such controlled elements have a positive effect on the static stability margins of the system. Nowadays this issue has become particularly important due to the latest accidents in the Russian electric power system. Consequently, the urgent problem is to develop a mathematical model of the electric power system in order to increase the stability of electric power systems based on the choice of the installation site and the parameters of the regulation law of two series compensation devices with thyristor control, taking into account automatic excitation control devices installed on the synchronous generators.

Materials and Methods: In order to solve these problems, we used methods of mathematical modeling of electric power systems, the theory of long-distance power transmission lines and electromechanical transients, and methods of analyzing electric power system stability. We also applied Matlab as a simulation tool.

Results: We have developed a mathematical model of electric power system taking into account electromagnetic transients in its elements with two controlled series compensation devices. This model allows calculating both steady-state and transient modes. We have also determined the optimal distances between controlled series compensation devices and their regulation law parameters both in terms of power line capacity and permissible voltages at series compensation device terminals. The analysis of the static characteristics of electric power systems with controlled series compensation devices has shown their high efficiency in increasing the limits of transmission capacity and improving the system aperiodic steady-state stability.

Conclusions: The developed model can be used to solve problems of designing long-distance transmission lines with controllable elements. It can be used to evaluate the steady state stability of the electric power system and to determine regulation law parameters of series compensation devices. When two controlled series compensation devices are installed at a distance of 300 km from each other (the optimum distance between the series compensation in terms of the transmission line capacity and the voltage at series compensation devices terminals), the stability transmission power limit achieves the thermal transmission power limit.

References in English: 

1. Ryzhov, Yu.P., Nekukar, A.R. O vozmozhnosti sooruzheniya na liniyakh SVN ustroystv prodol'noy emkostnoy kompensatsii bez shuntiruyushchikh reaktorov na vyvodakh kondensatornykh batarey [On the possibility of constructing longitudinal capacitive compensation devices on SHV lines without shunt reactors on the terminals of capacitor banks]. Elektrichestvo, 2012, no. 1.

2. Nekukar, A.R. Vybor raspolozheniya ustanovok raspredelennoy prodol'noy emkostnoy kompensatsii na linii elektroperedachi [The choice of the location of distributed longitudinal capacitive compensation on the power line]. Vestnik MEI, 2010, no. 4, pp. 5–11.

3. Golov V.P. Primenenie reguliruemoy kompensatsii linii elektroperedach [Use of adjustable compensation of the power line]. Izvestiya vuzov. Energetika, 1978, no. 6, pp. 3–8.

4. Swathi, Kommamuri, Sureshbabu, P. Optimal Location and Design of TCSC controller For Improvement of Stability. International Journal of Instrumentation, Control and Automation (IJICA), 2011, vol. 1, issue 2.

5. Del Rosso, A.D., Canizares, C.A., Dona, V.M. A study of TCSC controller design for power system stability improvement. IEEE Trans, Power Systs, 2003, pp. 1487–1496.

6. Venikov, V.A. Perekhodnye elektromekhanicheskie protsessy v elektricheskikh sistemakh [Electromechanical transients in electric systems]. Moscow, Vysshaya shkola, 1985. 536 p.

7. Acha, E., Fuerte-Esquivel, C.R., Ambriz-Perez, H., Angeles-Camacho, C. FACTS: Modeling and Simulation in Power Networks. 1st Edn., John Wiley and Sons Inc., New York, 2004.

8. Golov, V.P., Martirosyan, A.A., Moskvin, I.A., Vinogradova, A.A. Ustoychivost' elektroenergeticheskoy sistemy iz dvukh elektricheskikh stantsiy s reguliruemoy prodol'noy kompensatsiey [Stability of the electrical power engineering system consisting of two electrical power stations with controlled series compensation]. Vestnik IGEU, 2012, issue 5, pp. 26–31.

9. Zarudsky, G.K. O rezul'tatakh issledovaniy po primeneniyu prodol'noy emkostnoy kompensatsii v elektroperedachakh SVN [Results of the investigation into series capacitor appliance in power networks of extra-high voltage]. Elektrichestvo, 2007, no. 9, pp. 48–51.

Ключевые слова на русском языке: 
электроэнергетическая система, устройство продольной емкостной компенсации, распределенная продольная компенсация, пропускная способность линии, автоматическое регулирование возбуждения
Ключевые слова на английском языке: 
electric power system, controlled series compensation device, distributed controlled series compensation, power line capacity, automatic excitation control
The DOI index: 
10.17588/2072-2672.2017.4.030-036
Downloads count: 
9