Русская версия English version

Development of a model of thermal decomposition of dolomite in fluidized bed for providing sorbent systems of gas-plants

A.V. Mitrofanov

Vestnik IGEU, 2017 issue 4, pp. 56—61

Download PDF

Abstract in English: 

Background: Small solid fuel power plants are gaining popularity in the energy industry. This trend is connected to the problem of obtaining an independent and reliable power supply source and also with the development of thermochemical treatment of solid fuels. At the same time, there are several limitation factors in this process. The complex power technological processing has several problems associated with exhaust gas cleaning. Calcium-based sorbents are widely used to remove sulfur dioxide and sulfur trioxide and other gaseous pollutants. Dolomite seems to be the most appropriate choice among calcium-based sorbents. That is why the development of a simple but informative model for describing the technological process of thermal decomposition of dolomitic materials now requires special attention.

Materials and methods: The Markov chain approach is used to model the complex technological processes involving thermal decomposition of dolomite particles in fluidized stage. The proposed model is complemented by the following semi-empirical sub-models: solid suspension in gas upstream, gas-solid heat transfer, solid thermal decomposition. Dolomite conversion to oxides is considered as a special one-stage process.

Results: A cell model of complex technological processes involving thermal decomposition of dolomite particles in fluidized bed is proposed. The transition matrices are associated with the current physical properties of the substances involved, which makes the proposed model nonlinear. The comparison of experimental results from the literature sources with the obtained model predictions shows a good agreement for the constant-temperature process. The obtained calculation results show the effect of decomposition enthalpy on the thermodynamic stage of fluidized bed.

Conclusions: The Markov chains model has been modified by adding independent semi-empirical sub-models of processes in fluidized bed and has been successfully used to simulate dolomite thermal decomposition. The calculations have made it clear that in order to properly describe the industrial process we should take into account the enthalpy of dolomite decomposition. The obtained mathematical model can be considered as the scientific basis for operating control and design of fluidized bed reactors.

References in English: 

1.  Afanas'eva, O.V., Mingaleeva, G.R. Energy efficiency of small coal-fired power plants as a criterion of their wide applicability. Solid fuel chemistry, 2009, vol. 43, no. 1, pp. 55–59.

2.  Mitrofanov, A.V., Tannous, K., Mizonov, V.E. Eksperimental'noe issledovanie gidrodinamiki chastits biotopliva v topke s kipyashchim sloem [Experimental study of hydrodynamics of biofuel particles in fluidized bed furnaces]. Vestnik IGEU, 2014, issue 3, рр. 65–67.

3.  Afanas'eva, O.V., Mingaleeva, G.R. Ochistka generatornogo gaza na ugol'noy mini-TES [Cleaning of generator gas at mini coal steam power plants]. Energetika Tatarstana, 2012, no. 4(28), pp. 25–28.

4.  Dobrego, K.V. Makrokineticheskie modeli termicheskogo razlozheniya dolomita dlya rascheta sorbtsionnykh sistem gazogeneratorov [Macrokinetic models of dolomite thermal decomposition for calculating gas generator sorption systems]. Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh ob"edineniy SNG. Energetika, 2015, no. 5, pp. 51–59.

5.  Malko, M.V., Vasilevich, S.V., Degterov, D.V., Bogach, V.N. Eksperimental'noe issledovanie kinetiki termicheskogo razlozheniya belorusskikh dolomitov [Experimental study of Belorussian dolomite thermal decomposition kinetics]. Vestsi Natsyyanal'noy akademii navuk Belarusі. Seryya fіzіka-tekhnіchnykh navuk, 2015, no. 1, pp. 95–101.

6.  Beruto, D.T., Vecchiattini, R., Giordani, M. Solid products and rate-limiting step in the thermal half decomposition of natural dolomite in a CO2 (G) atmosphere. Thermochimica Acta, 2003, vol. 405, pp. 183–194.

7.  Rat’ko, A.I., Ivanets, A.I., Kulak, A.I., Morozov, E.A., Sakhar, I.O. Thermal decomposition of natural dolomite. Inorganic Materials, 2011, vol. 47, no. 12, pp. 1372–1377.

8.  Kosenko, N.F., Filatova, N.V. Kinetika raz-lozheniya dolomita v mikrovolnovom pole [Dolomite decomposition kinetics in microwave field]. Ogneupory i tekhnicheskaya keramika, 2010, no. 3, pp. 31–34.

9.  Rodriguez-Navarro, C., Kudlacz, K., Ruiz-Agudo, E. The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses. American Mineralogist, 2012, vol. 97(1), pp. 38–51.

10.   Mitrofanov, A.V., Mizonov, V.E., Tannous, K. Markov chain model of particulate solids batch drying in a conical fluidized bed. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya tekhnologiya, 2016, vol. 59, no. 12, pp. 93–99.

11.   Ogurtsov, A.V., Mitrofanov, A.V., Mizonov, V.E., Ogurtsov, V.A., Tannous, K. Raschetno-eksperimental'noe issledovanie raspredeleniya tverdykh chastits v apparate s dvukhmernym psevdo-ozhizhennym sloem [Calculation and experimental study of solid particle distribution in the apparatus with two-dimensional fluidized bed]. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2009, vol. 52, no. 11, pp.131–134.

12.   Balagurov, I.A., Mizonov, V.E., Mitrofanov, A.V. Matematicheskaya model' formirovaniya mnogokomponentnoy smesi segregiruyushchikh komponentov [A mathematical model of formation of multi-component mixture of segregating components]. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2014, vol. 57, no. 8, pp. 67–70.

13.   Dehling, H.G., Hoffman, A.C., Stuut, H.W. Stochastic Models for Transport in a Fluidised Bed. SIAM Journal of Applied Mathematics, 1999, vol. 60, no. 1, pp. 337–358.

14.   Zhukov, V.P., Belyakov, A.N. Termodinamiche-skiy podkhod k opisaniyu mekhanicheskikh protsessov v sypuchikh sredakh [A thermodynamic approach to describing mechanical processes in granular media]. Vestnik IGEU, 2013, issue 1, pp. 74–77. 

15.   Hartman, M., Trnka, O., Vesely, V., Svoboda, K. Predicting the rate of thermal decomposition of dolomite. Chemical Engineering Science, 1996, vol. 51, no. 23, pp. 5229–5232.

16. Bird, R.B., Steward, W.E., Lightfood, E.N. Transport Phenomena. John Wiley & Sons, Inc. New York, 2002. 1069 p

Ключевые слова на русском языке: 
псевдоожиженный слой, вектор состояния, матрица переходных вероятностей, скорость витания частицы, теплоотдача, массоотдача, доломит, термическое разложение, твердое топливо
Ключевые слова на английском языке: 
fluidized bed, state vector, matrix of transition probabilities, particle settling velocity, heat transfer, mass transfer, dolomite, thermal decomposition, solid fuel
The DOI index: 
10.17588/2072-2672.2017.4.056-061
Downloads count: 
13