Русская версия English version

Метод цифровой обработки сигналов синусно-косинусного инкрементального датчика положения для исключения влияния постоянной составляющей этих сигналов

А.С. Анучин, В.С. Подзорова, В.И. Кульманов, Д.М. Шпак

Вестник ИГЭУ, 2017 г. выпуск 6, сс. 33—39

Скачать PDF

Аннотация на русском языке: 

Состояние вопроса: В настоящее время синусно-косинусные инкрементальные датчики положения ротора находят применение в высокоскоростных электроприводах. Постоянная составляющая сигналов таких датчиков может существенно снижать точность оценки скорости. Обычно данная проблема решается применением фильтров верхних частот [1]. Из-за дифференцирования по времени данные фильтры имеют проблемы с работой на малых скоростях. В связи с этим необходим метод устранения влияния постоянной составляющей в системе оценки скорости, не имеющий данного недостатка. Требуемые показатели системы оценки скорости: полоса пропускания измерителя скорости должна быть не менее 4 кГц; точность – ±25 об/мин в диапазоне от 0 до 30000 об/мин.

Материалы и методы: Использованы результаты моделирования и экспериментальных исследований электропривода с синусно-косинусным инкрементальным датчиком положения, показывающие влияние постоянной составляющей во входных сигналах на точность оценки скорости на основе ФАПЧ (PLL). Для устранения влияния постоянной составляющей использованы методы цифровой обработки сигналов.

Результаты: Предложена реализация цифрового фильтра верхних частот, в которой дифференцирование по времени заменяется дифференцированием по углу. Результаты моделирования и экспериментов показывают корректность работы такого фильтра в широком диапазоне рабочих скоростей привода, включая нулевую скорость (останов).

Выводы: Установлено, что предложенный метод подавления постоянной составляющей сигналов может применяться для повышения точности системы оценки скорости с синусно-косинусными инкрементальными датчиками положения. Погрешность расчета скорости укладывается в допустимые пределы ±25 об/мин.

Список литературы на русском языке: 

1. Peter Vas. Sensorless Vector and Direct Torque Control / Oxford University Press. – Oxford , 1998. – 760 с.

2. Ilmiawan A.F.,  Wijanarko D.,  Arofat A.H.,  Hindersyah H.,  Purwadi A. An easy speed measurement for incremental rotary encoder using multi stage moving average method // Proceedings of International Conference on Electrical Engineering and Computer Science (ICEECS). – 2014. – С. 363–368. doi: 10.1109/ICEECS.2014.7045279.

3. Petrella R., Tursini M., Peretti L., Zigliotto M. Speed measurement algorithms for low-resolution incremental encoder equipped drives: a comparative analysis // Proceedings of International Conference on Electrical Machines and Power Electronics (ACEMP). – 2007. – С. 780–787. doi: 10.1109/ACEMP.2007.4510607.

4. Negrea C. Alin, Imecs M., Incze I. lov, Pop A., Szabo C. Error compensation methods in speed identification using incremental encoder // Proceedings of International Conference and Exposition on Electrical and Power Engineering (EPE). – 2012. – С. 441–445. doi: 10.1109/ICEPE.2012.6463857.

5. Negrea C. Alin, Incze I. Iov, Imecs M., Pop A.V., Szabo C. An improved speed identification method using incremental encoder in electric drives // Proceedings of IEEE International Conference on Automation Quality and Testing Robotics (AQTR), 2012. – 2012. – С. 536–540. doi: 10.1109/AQTR.2012.6237769.

6. El-Murr G., Giaouris D., Finch J.W. UNIVERSAL PLL STRATEGY FOR SENSORLESS SPEED AND POSITION ESTIMATION OF PMSM // Proceedings of IEEE Region 10 and the Third international Conference on Industrial and Information Systems, 2008. – 2008. – С. 1–6. doi: 10.1109/ICIINFS.2008.4798473.

7. Dong Yeob Han, Yongsoo Cho, Kyo-Beum Lee. Simple Rotor Position Estimation for Sensorless Control of IPMSM using PLL based on EEMF // Proceedings of IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC). – 2016. – С. 656–660. doi: 10.1109/ITEC-AP.2016.7513034.

8. German A. Ramos, Ramon Costa-Castello, Josep M. Olm. Digital Repetitive Control under Varying Frequency Conditions // Springer Heidelberg New York Dordrecht London. – 2013. – Т. 446. – 157 с.

Ключевые слова на русском языке: 
регулируемый электропривод, автоматическая настройка, управление приводами, управление движением, станочные приводы, датчики положения, обработка сигналов.
Ключевые слова на английском языке: 
controlled electric drive, auto-tuning, drive control, motion control, machine tool drives, encoders, signal processing.
Индекс DOI: 
10.17588/2072-2672.2017.6.033-039
Количество скачиваний: 
44