УДК 621.039.57

Радиолиз теплоносителя и методы обеспечения взрывозащищенности корпусного кипящего реактора

А.С. Курский¹, В.В. Калыгин²

¹ ОАО «ВНИИНМ» Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара, г. Москва, Российская Федерация

² ОАО «ГНЦ НИИАР» Государственный научный центр – научно-исследовательский институт атомных реакторов,

г. Димитровград, Российская Федерация

E-mail: kurskiyy.aleksandr@rambler.ru, kalygin@niiar.ru

Авторское резюме

Состояние вопроса: Существующие методы обеспечения безопасности за счет локализации течей теплоносителя в герметичном оборудовании не обеспечивают безопасность установок с легководными реакторами: образование гремучей смеси приводит к разрушению оборудования и выбросу радиоактивных веществ в окружающую среду.

Материалы и методы: Основной объем информации получен методом эмпирического исследования. Новые конструктивные решения и технологические схемы разработаны на основе результатов опытноэкспериментальных исследований.

Результаты: Представлены результаты исследований радиолитических процессов корпусного кипящего реактора ВК-50 с естественной циркуляцией теплоносителя. Дана характеристика особенностей работы систем каталитического сжигания водорода в условиях повышенной влажности парогазовой смеси при авариях.

Выводы: Использование полученных результатов направлено на усовершенствование установок с корпусными кипящими реакторами.

Ключевые слова: корпусный кипящий реактор, продукты радиолиза, установка каталитического сжигания, гремучая смесь.

Coolant Radiolysis and Methods of Providing Explosion Protection of Shell-Type Boiling-Water Reactors

A.S. Kursky¹, V.V. Kalygin²

¹ High Tech Research Institute of Inorganic Materials, «HTRIIM», Moscow, Russian Federation ² State Scientific Center – Research Institute of Atomic Reactors (JSC «SSC RIAR»), Dimitrovgrad, Russian Federation E-mail: kurskiyy.aleksandr@rambler.ru, kalygin@niiar.ru

Abstract

Background: The existing methods providing security by localizing coolant leaks in sealed equipment cannot protect light-water reactor power plants as the explosive mixture formation leads to the equipment destruction and radioactive substance emissions into the environment.

Materials and methods: The basic information was obtained by empirical research. New design solutions and technological schemes have been developed based on the results of pilot studies.

Results: The article is devoted to the radiolytic processes at the coolant natural circulation boiling water reactor VK-50. The article describes operation characteristics of hydrogen catalytic combustion systems under the wet conditions of the steam-gas mixture in case of emergency.

Conclusions: The obtained results can be applied to improving shell-type boiling water reactor power plants.

Key words: shell-type boiling water reactor, radiolysis products, catalytically-assisted combustion power plant, explosive mixture.

Введение. Корпусные кипящие реакторы нашли широкое применение в мировой атомной энергетике. Реакторы типа BWR более 50 лет выдерживают конкурентную борьбу с двухконтурными установками типа PWR.

Современный этап эволюции BWR – это переход к естественной циркуляции теплоносителя в корпусе реактора (проекты установок ССR, SBWR, ESBWR поколений III и III+) и пассивным элементам систем безопасности. Многофункциональность пассивных систем в инновационных проектах заключается в комплексном решении проблем безопасности, включая взрывозащищенность реакторных установок – один из актуальных вопросов современной атомной энергетики.

После аварий на АЭС «Фукушима-I» (2011 г.) со взрывами гремучего газа и выходом радиоактивности в окружающую среду особенно остро поставлен вопрос отработки технических решений и методов обеспечения взрывозащищенности на действующей прототипной реакторной установке. Поэтому для мировой атомной энергетики очевидна актуальность исследований взрывозащищенности реакторной установки ВК-50 – действующего корпусного кипящего реактора с естественной циркуляцией теплоносителя, который эксплуа-

© ФГБОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина»

тируется с 1965 г. в г. Димитровграде Ульяновской области.

Исследования радиолитических процессов в условиях кипения теплоносителя. Газовый режим корпусного кипящего реактора при выдаче пара из реактора на турбину характеризуется как процессом генерации водорода, так и непрерывным его удалением в конденсатор турбины вместе с паром.

Радиолиз теплоносителя в кипящем реакторе протекает более интенсивно, чем в водо-водяных реакторах под давлением:

- в связи с кипением воды и разделением фаз;

- вследствие выноса радиолитических газов с паром;

 из-за отсутствия условий по рекомбинации радиолитических газов (H₂ + O₂).

Важной характеристикой радиолиза теплоносителя является скорость выхода радиолитических газов с паром (v), определяемая как общий объем газов, выходящих из реактора в единицу времени, или как отношение мощности, приходящейся на кипение теплоносителя, к общей мощности реактора:

$$\upsilon \sim \frac{N \kappa u \Pi}{N \kappa u \Pi + N$$
экон $= \frac{Ga_3 \times r \times \chi}{Dp(i'-i)},$ (1)

где Лкип – мощность, приходящаяся на кипение теплоносителя: Иэкон – мошность, приходящаяся на подогрев теплоносителя до температуры насыщения: Gas - расход теплоносителя через активную зону реактора; Dp расход пара из корпуса реактора; і' – энтальпия насыщенного пара; і – энтальпия воды на входе в активную зону реактора; χ – массовое паросодержание.

Скорость радиолиза возрастает с увеличением доли мощности, приходящейся на кипение. Поэтому содержание водорода (газов радиолиза) зависит от движущего напора в контуре естественной циркуляции. Водорода тем больше, чем ниже давление в реакторе и меньше движущий напор (рис. 1). С ростом мощности происходит увеличение захвата пара в опускной участок контура естественной циркуляции. В связи с этим увеличивается температура питательной воды и уменьшается недогрев питательной воды до температуры насыщения на входе в активную зону реактора. Это означает уменьшение мощности, приходящейся на экономайзерный участок, и увеличение мощности испарительного участка. Исследования радиолитических процессов на ВК-50 подтвердили, что с ростом мощности корпусной кипящий реактор с естественной циркуляцией теплоносителя становится все более взрывобезопасным.

Однако рост скорости радиолиза имеет некий предел. На рис. 1 приведены результаты экспериментов, согласно которым скорость выхода газов радиолиза несколько снижается к номинальной мощности реактора.

Рис. 1. Зависимость скорости выхода радиолитических газов с паром от мощности реактора: 1 – при давлении в реакторе Рр = 4,0 МПа; 2 – при давлении в реакторе *P*p = 5,5 МПа

Скорость выхода радиолитических газов, которая, согласно (1), пропорциональна росту массового паросодержания (х), достигает максимального значения при массовом паросодержании около 15 % и незначительно уменьшается при дальнейшем увеличении паросодержания. Первоначальный рост связан с уменьшением газов в воде и уменьшением скорости их рекомбинации. Но по мере увеличения паросодержания уменьшается плотность пароводяной смеси и, следовательно, общее количество воды в зоне облучения исходной среды для радиолитических процессов. Этот эффект начинает превалировать с момента достижения паросодержания значения ≈ 15 %.

Поскольку скорость выхода радиолитических газов с паром на турбину растет практически на всем диапазоне увеличения мощности, кроме участка 0,9–1,0 N_{номинальная}, то концентрация радиолитических газов в паре самого реактора непрерывно уменьшается и особенно интенсивно при небольших уровнях мощности (рис. 2).

в паре от мощности реактора: «о» - пуск реактора без бора в теплоносителе; «+» - пуск реактора с концентрацией Н₃ВО₃ 0,83 г/кг

На номинальном режиме эксплуатации ВК-50 (мощность реактора 200 МВт, давление в реакторе 5,5 МПа) содержание водорода в паре основного контура характеризуется следующими данными:

 удельный 	выход	водорода
$0.05 \frac{HM^3}{M}$.		
^{,,,,,} МВт-ч ,		

• содержание водорода в паре 29–35 нмл/кг;

• объемная концентрация водорода в паре 0,0026–0,0033 %, что на 4 порядка ниже взрывоопасных значений.

Согласно прямым замерам водорода на входе в активную зону с паром, в опускной участок захватывается только 0,4 нмл/кг (36 мкг/кг). Столь низкие значения объемной концентрации водорода в паре реактора свидетельствуют о высокой надежности с точки зрения взрывозащищенности при работе турбинной части установки.

Влияние водно-химического режима на взрывобезопасность реактора. Выполненные на ВК-50 исследования показали, что выход радиолитических газов с паром в значительной степени определяется не только уровнем мощности, но и качеством теплоносителя. При анализе режимов нормальной эксплуатации реактора было установлено, что радиолиз теплоносителя зависит от количества радиоактивных продуктов коррозии в теплоносителе: ⁶⁴Cu, ⁶⁵Zn и особенно ⁵⁹Fe. При изменении pH от 8 до 5 выход радиолитических газов с паром увеличивается с 60 до 200 нмл/кг. При этом радиолиз значительно усиливается при снижении pH < 6.

В пусковых режимах общее содержание примесей в теплоносителе всегда больше, чем в рабочих режимах. Содержание водорода в паре реактора в пуско-остановочном режиме почти на порядок выше, чем в рабочем режиме. Тем не менее объемная концентрация водорода (0,03 %) остается очень малой по сравнению со взрывоопасным значением.

На радиолиз теплоносителя существенное влияние оказывает жидкий борный поглотитель нейтронов. В экспериментах, проведенных в пусковых режимах с вводом в теплоноситель борной кислоты (H₃BO₃), содержание газов радиолиза (H₂ и O₂) в паре повышалось в 1,5-2 раза по сравнению с режимом без борной кислоты в теплоносителе (рис. 2). В табл. 1 приведены результаты пусковых режимов с вводом борной кислоты до концентраций 1-1,5 г/кг. По мере вывода борной кислоты из теплоносителя при подъеме мощности концентрация водорода уменьшается: на мощности 40 МВт содержание водорода в паре составляло 315-350 нмл/кг (0,031-0,35 % объемных), а при повышении мощности до 80 МВт оно снизилось до 70-80 нмл/кг (0,007-0,008 % объемных) [1].

Таблица 1. Влияние борной кислоты на радиолиз теплоносителя

		1					
Содер	жание	Конце	нтрация	Показа	Показатели воды реактора		
газов,	%	газов	радио-				
		лиза					
		в паре	•				
H ₂	O ₂	мл/кг	%	H ₃ BO ₃	pН	Fe	Cu
				г/кг	1	мкг/кг	мкг/кг
Режим без борной кислоты							
78	22	240	0,024	-	5	350	16
78,8	21,2	60	0,006	-	7,5	50	15,5
Режим с борной кислотой							
78	22	470	0,047	1,45	5,1	570	53
78	22	351	0,035	0,83	5,3	428	48
78,4	21,6	204	0,02	0,5	5,75	88	34
78,4	21,6	80	0,008	0,24	6,5	40	18

Влияние борной кислоты на радиолиз воды проявляется как непосредственно через активацию ядер бора при их распаде, так и через повышение концентрации продуктов коррозии [2]. Использование борной кислоты только в пусковых режимах в начале кампании и исключение борного регулирования на стационарных режимах позволяет поддерживать низкие концентрации радиолитических газов при работе корпусного кипящего реактора.

Таким образом, гидродинамически стабилизированные режимы при установившихся водно-химических показателях теплоносителя положительно влияют на взрывозащищенность кипящего реактора.

Особенности радиолитических процессов в пуско-остановочных режимах с замкнутым паровым объемом реактора. При исследованиях радиолитических процессов в пуско-остановочных режимах без выдачи пара из реактора концентрация «гремучей» смеси в замкнутом паровом пространстве реактора составляла в среднем 0,03 % (или 350 нмл/кг). Полученные значения приведены в табл. 2. Эти значения на порядок выше тех, которые имеют место в режиме с выдачей пара на турбину, и тем выше, чем больше содержание продуктов коррозии и борной кислоты в теплоносителе.

Достижение равновесных концентраций через 5–6 часов после закрытия парогазовых сдувок (рис. 3) свидетельствует о переходе газов из парогазового объема в жидкость путем растворения через зеркало испарения.

Рис. 3. Изменение концентрации газов радиолиза (H₂ + O₂) в паре реактора без отведения парогазовых парогазовой смеси из реактора: 1 – давление в реакторе 0,5 МПа, мощность реактора 3,0 МВт; 2 – давление в реакторе 0,8 МПа, мощность реактора 3,5 МВт; βоб – объемная концентрация газов радиолиза (H₂ + O₂), %

Эксперименты на ВК-50 показали, что данный эффект возможен только в случае, когда рабочее давление (*Pp*) превышает давление насыщения у зеркала испарения (*Ps*):

$$C_{\rm H} = \alpha_{\rm H} \, K_{\rm r} (Pp - Ps), \tag{2}$$

где $\alpha_{\rm H}$ – объемная доля водорода; $K_{\rm r}$ – константа Генри; (*Pp* – *Ps*) – парциальное давление водорода непосредственно над зеркалом испарения.

Для создания избыточного давления (2) водород находится в атмосфере азота, подаваемого в корпус реактора ВК-50, и в связи с этим не представляет опасности. При создании корпусных кипящих реакторов без соответствующего газового режима с подавлением радиолиза теплоносителя в пусковых режимах необходимо обеспечивать постоянную сдувку радиолитических газов из корпуса реактора.

Таблица 2. Равновесные концентрации «гремучей» смеси в замкнутом паровом пространстве

Давление в Мощность реакторе, реактора,		Концентрации «гремучей» смеси		
МПа	МВт	% об.	нмл/кг	
1,6	4,0	0,033	375	
1,2	3,5	0,030	360	
0,8	3,2	0,029	350	

Газовый режим с замкнутым контуром в пуско-остановочных режимах является аналогом режима нормальной эксплуатации первоначальной концепции легководного реактора атомной станции теплоснабжения (АСТ-500). Дополнительные коррекционные меры, которые необходимо обеспечивать в паровом режиме с замкнутым контуром, заставили разработчиков перевести технологию АСТ на работу с водой под давлением без газового объема в реакторе. В отличие от АСТ, продукты радиолиза выводятся из реактора типа BWR в прямом цикле работы установки.

Обеспечение взрывобезопасности на действующей реакторной установке. Основная проблема кипящего реактора с прямым циклом связана не с паровым объемом реактора, из которого происходит постоянный унос водорода на турбину, а заключается в следующем:

• в удалении «газовой подушки» из тупиковых зон оборудования от реактора до конденсатора турбины, включая теплофикационную установку;

 в исключении слабовентилируемых объемов в конструкции реактора и паропроводов.

В связи с этим были проведены работы по реконструкции элементов крышки реактора ВК-50: замена чехлов СУЗ на новые с организованной сдувкой газов в паровой контур на турбину и монтаж страхующих сдувочных линий от всех измерительных каналов.

На реакторной установке ВК-50 отсутствуют условия и не применяются меры по рекомбинации радиолитических газов (H₂ + O₂). В связи с этим создаются условия по накоплению радиолитического водорода в зонах конденсации пара, что требует определенных технических и организационных мер по обеспечению его взрывобезопасности.

Влияние конденсации пара на процессы радиолиза, а также наличие застойных паровых зон указывает на необходимость исключения подачи воды на механизмы СУЗ при их верхнем расположении в конструкции корпусных кипящих реакторов. В частности, использование вместо электроприводов конструкций гидроприводов решает проблему взрывобезопасности, особенно в пуско-остановочных режимах с замкнутым паровым объемом.

Максимальные концентрации водорода зафиксированы в газоохладителях конденсатора турбины, где прекращается процесс разбавления водорода паром. Поэтому взрывозащищенность корпусного кипящего реактора при нормальной эксплуатации в основном определяется безопасностью конденсатора турбины и эжектора турбины, отводящего газы из конденсатора для создания в нем вакуума.

В табл. 3 дан анализ парогазовой среды на входе в эжекторы (в зоне наивысших концентраций водорода) при номинальной мощности реактора ВК-50.

Таблица 3. Характеристики парогазовой смеси перед эжекторами турбины в зависимости от температуры (*t*_s) и давления насыщения (*P*_s)

t₅, °C	D пара, кг/ч	<i>P</i> s, кг/м ²	Концентрация <i>H</i> ₂ , % об.
25	65	323	10,0
30	85	432	8,2
35	110	573	6,5

При реальных условиях эксплуатации максимальная объемная концентрация водо-

рода, измеренная после газоохладителей конденсатора, не превышает 10 %, что ниже взрывоопасного значения (для парогазовой смеси ~12 %).

Взрывобезопасность конденсатора определяется не столько объемной концентрацией водорода, сколько давлением в конденсаторе. При давлении в конденсаторе < 5 кПа парогазовая смесь абсолютно взрывобезопасна. Это основывается на том, что смесь водорода с сухим воздухом взрывобезопасна при давлениях до 120 мм рт. ст. (16 кПа) [3]. Давление в конденсаторе ниже этого значения, а водород находится в атмосфере пара.

Анализ эффективности технологии сжигания водорода. После эжекторов турбины парогазовая смесь вместе с продуктами радиолиза направляется на контур сжигания газовой смеси (КСГС). В КСГС вместе с водородом сжигаются и радионуклиды трития, выходящие из кипящего реактора в газообразном состоянии.

Решение проблем взрывозащищенности на установке КСГС заключается в предварительном осушении парогазовой смеси, поскольку катализаторы (из платины, родия, осмия, иридия, рутения или палладия) теряют работоспособность при влажности парогазовой смеси 100 %: капельки влаги сорбируются на активной поверхности катализатора, препятствуя доступу водороду.

Подогрев парогазовой смеси до контактного аппарата производится в пусковом теплообменнике, а в режиме работы на мощности на встроенном теплообменнике контактного аппарата, на который подается насыщенный пар давлением 0,6 МПа. Данная технология позволяет обеспечивать нормальный режим сжигания водорода. Опыт работы ВК-50 показал, что наиболее эффективное сжигание водорода на платиновом катализаторе происходит при перегреве парогазовой смеси не менее чем на 40 °C. Контактный аппарат со встроенным в слой катализатора теплообменником обеспечивает осушку катализатора от влаги и сжигание водорода с эффективностью до 99 %. Опыт стабильной работы контактного аппарата с подогревом парогазовой смеси и мгновенным сжиганием водорода на поверхности прогретого катализатора был учтен при создании технологии сжигания водорода в сдувках от защитной оболочки корпуса кипящего реактора малой мощности, предназначенного для теплоснабжения городов [4].

Анализ аварий на легководных реакторах «Три Майл Айленд» (реактор типа PWR, 1979 г.), «Фукушима-I» (реакторы типа BWR, 2011 г.) показывает, что при разгерметизации корпуса реактора выброс радиоактивного теплоносителя в атмосферу определяется в конечном итоге обеспечением взрывозащищенности реактора. Традиционно концепция радиационной безопасности в случае течи теплоносителя заключается в удержании радиоактивных веществ в замкнутом объеме - в первичной защитной оболочке (ПЗО). Вместе с радиоактивными газами в атмосферу ПЗО выходит радиолитический водород и водород продукт пароциркониевой реакции. Недостатком схемы герметичной оболочки является зависимость работоспособности каталитических рекомбинаторов водорода от влажности газовой смеси. Влажный насыщенный пар конденсируется в порах катализатора (платины, родия, осмия, иридия, рутения или палладия), препятствуя проникновению водорода к активной поверхности оборудования [5] и увеличивая вероятность образования гремучей смеси в верхних точках ПЗО.

Доказательством может также служить ситуация, произошедшая в 1974 г. на первом энергоблоке РБМК-1000 Ленинградской АЭС при взрыве железобетонного газгольдера на линии выдержки радиоактивных газов после эжекторов турбины.

Таким образом, решение проблемы радиационной безопасности за счет локализации течей теплоносителя в герметичном оборудовании приводит к разрушению этого оборудования и к выбросу радиоактивных веществ в окружающую среду. Формированию альтернативных методов обеспечения радиационной безопасности и взрывозащищенности корпусных кипящих реакторов посвящены исследования, выполненные в рамках диссертационной работы.

В разработанном и внедренном на ВК-50 методе взрывозащищенность корпусного кипящего реактора с естественной циркуляцией теплоносителя в запроектной аварии с разгерметизацией корпуса реактора и отказами по внешнему электроснабжению и охлаждению активной зоны обеспечивается следующим образом:

1. При нормальной эксплуатации осуществляется постоянная вентиляция замкнутого объема между корпусами реактора и его защитной оболочкой через систему каталитического сжигания водорода (рис. 4, поз. 2). Платиновый катализатор, установленный на сдувочной линии защитной оболочки реактора, прогрет до температуры 200–220 °С. Вентиляция межкорпусного объема организована сжатым воздухом. Подача сжатого воздуха во внутреннее пространство контейнмента в режиме нормальной эксплуатации осуществляется компрессором (поз.8), при потере электроснабжения – от ресивера (поз.5).

2. Режим «выбег генератора» позволяет в первые 3 минуты аварии обеспечить взрывобезопасность установки за счет сброса радиолитического водорода из реактора в конденсатор турбины (поз.12), а из конденсатора эжекторами – на установку сжигания водорода (поз.11). Работа основного контура теплоносителя обеспечивается подачей электроэнергии на высоковольтные насосы (питательный, конденсатный и циркуляционный насос охлаждения конденсатора турбины) от шин турбогенератора. Работа турбины осуществляется паром, остающимся в трубопроводах и в самом реакторе после срабатывания аварийной защиты [6].

Рис. 4. Системы обеспечения взрывозащищенности: 1 – пар на турбину; 2 – установка каталитического сжигания водорода; 3 – установка снижения радиоактивности выбросов (УПАК); 4 – спецвентиляция; 5 – ресивер со сжатым воздухом; 6 – дроссельные клапаны; 7 – отсечная арматура; 8 – компрессор; 9 – турбина; 10 – генератор; 11 – установка сжигания водорода; 12 – конденсатор; 13 – конденсатный насос; 14 – деаэратор; 15 – питательный насос; 16 – подача воды в реактор

3. После завершения режима «выбег генератора» организуется автоматический перевод вентиляции парового объема реактора на установку сжигания водорода защитной оболочки корпуса реактора (поз.7) с предварительной конденсацией влаги на прямоточном парогенерирующем теплообменнике, расположенном под крышкой реактора (поз.3). Размещение под крышкой реактора имеет следующие преимущества: теплообменник и присоединенные к нему трубопроводы находятся в режиме ожидания включения как сухотрубы, т. е. без теплоносителя, что обеспечивает взрывобезопасность системы.

Рис. 5. Система конденсации влаги в парогазовой смеси, направляемой на систему каталитического сжигания водорода: 1 – первичная защитная оболочка (контейнмент); 2 – корпусной кипящий реактор; 3 – конденсатор аварийного расхолаживания (теплообменник, расположенный под крышкой реактора); 4 – бак аварийного расхолаживания; 5 – установка сжигания водорода; 6 – на систему подавления радиоактивности (УПАК)

Проведенные исследования и экспериментально опробованные на реакторе ВК-50 технологии доказывают, что взрывозащищенность при тяжелых запроектных авариях на корпусных кипящих реакторах с естественной циркуляцией теплоносителя надежно обеспечивается:

 постоянной вентиляцией внутреннего объема реактора и его защитной оболочки в систему очистки и систему сжигания водорода;

– использованием контура теплоносителя в режиме «выбега генератора» в качестве первого этапа обеспечения взрывозащищенности.

Заключение

Естественная взрывозащищенность кипящего реактора обеспечивается за счет постоянного уноса продуктов ралиолиза с паром.

Существенные изменения в радиолизе воды вследствие нарушений воднохимического режима в пусковом кипящем режиме с замкнутым паровым объемом не могут привести к взрывоопасным концентрациям в оборудовании одноконтурной реакторной установки.

Взрывозащищенность оборудования с наибольшей концентрацией водорода обеспечивается низким давлением в вакуумной части контура теплоносителя.

Конструктивные решения, заложенные в конструкцию оборудования контура теплоносителя и технологию системы сжигания водорода, позволяют исключать вероятность образования гремучей смеси в оборудовании установки ВК-50.

Выполненные на ВК-50 исследования радиолитических процессов позволяют гарантированно обеспечивать взрывозащищенность корпусных кипящих реакторов в режимах нормальной эксплуатации и при авариях.

Список литературы

1. **Курский А.С.** Обоснование эффективности и безопасности использования корпусных кипящих реакторов для малой энергетики на основе результатов исследований на реакторе ВК-50: автореф. дис. ... канд. тех. наук: 05.14.03. – М., 2011. – 22 с.

2. Забелин А.И. Исследование водно-химических режимов АЭС ВК-50: препринт НИИАР-23(528). – Димитровград, 1982. – 31 с.

3. Иванов В.С., Серебров Ф.З. Газомасляное хозяйство генераторов с водородным охлаждением. – М.: Энергия, 1970. – С. 122–125.

4. **Корпусные** кипящие реакторы для атомной теплофикации / А.С. Курский, В.М. Ещеркин, В.В. Калыгин и др. // Атомная энергия. – 2011. – Т. 111, вып. 5. – С. 297–302.

5. Локализация радиоактивного пара после предохранительных клапанов на водо-водяном реакторе / А.С. Курский, В.В. Калыгин., И.И. Семидоцкий, П.А. Михайлов // Атомная энергия. – 2013. – Т. 114, вып. 1 – С. 47–50.

6. Курский А.С., Калыгин В.В., Семидоцкий И.И. Перспективы атомной теплофикации в России // Теплоэнергетика. – 2012. – № 5. – С. 3–9.

References

1. Kurskiy, A.S. Obosnovanie effektivnosti i bezopasnosti ispol'zovaniya korpusnykh kipyashchikh reaktorov dlya maloy energetiki na osnove rezul'tatov issledovaniy na reaktore VK-50. Avtoref. diss. kand. tekhn. nauk [Evaluation of the effectiveness and safety of using shell-type boiling water reactors for small power plants based on the results of studying the reactor VK-50. Cand. tech. sci. diss.]. Moscow, 2011. 22 p.

2. Zabelin, A.I. *Issledovanie vodno-khimicheskikh rezhimov AES VK-50: preprint NIIAR-23(528)* [Study of water chemical modes of Nuclear Power Plants VK-50: preprint of the Scientific Research Institute of Atomic Reactors-23(528)]. Dimitrovgrad, 1982. 31 p.

3. Ivanov, V.S., Serebrov, F.Z. *Gazomaslyanoe khozyaystvo generatorov s vodorodnym okhlazhdeniem* [Gasoil equipment of hydrogen-cooled generators]. Moscow, Energiya, 1970, pp.122–125.

4. Kurskiy, A.S., Eshcherkin, V.M., Kalygin, V.V., Svyatkin, M.N., Semidotskiy, I.I. Korpusnye kipyashchie reaktory dlya atomnoy teplofikatsii [Boiling water shell-type reactors for nuclear district heating]. *Atomnaya Energiya*, 2011, vol. 111, issue 5, pp. 297–302.

5. Kurskiy, A.S., Kalygin, V.V., Semidotskiy, I.I., Mikhaylov, P.A. Lokalizatsiya radioaktivnogo para posle predokhranitel'nykh klapanov na vodo-vodyanom reaktore [Localization or radioactive vapor from safety valves at a water-cooled reactor], *Atomnaya Energiya*, 2013, vol. 114, issue 1, pp. 47–50. 6. Kurskiy A.S., Kalygin V.V., Semidotskiy I.I. Perspek-

6. Kurskiy A.S., Kalygin V.V., Semidotskiy I.I. Perspektivy atomnoy teplofikatsii v Rossii [Low-power nuclear engineering for heat production], *Teploenergetika*, 2012, no. 5, pp. 345–351.

кандидат технических наук, соискатель научной степени доктора технических наук, главный инженер, e-mail: kurskiyy.aleksandr@rambler.ru

Калыгин Владимир Валентинович,

Курский Александр Семенович, ОАО «ВНИИНМ» (г. Москва),

ОАО «ГНЦ НИИАР» (г. Димитровград),

доктор технических наук, профессор, заместитель директора по научной работе, e-mail: kalygin@niiar.ru