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Моделирование колебательного движения пузырька газа  
в слое жидкости  

Авторское резюме 
 
Состояние вопроса. Тепловые и химические процессы в газожидкостных реакторах часто реализуются при слож-

ном характере движения компонентов, который во многом определяет время процесса, площадь контакта фаз и, 
соответственно, эффективность и скорость протекания тепловых и химических процессов в технологических уста-
новках. Особый интерес у исследователей вызывают наблюдаемые в опытах колебания скорости движения пу-
зырьков газа в газожидкостных реакторах, которые существенным образом влияют на эффективность и продол-
жительность анализируемых процессов. В связи с этим разработка моделей движения пузырьков газа в слое жид-
кости, учитывающих колебания скорости, представляется актуальной задачей с точки зрения совершенствования 
анализируемых процессов. 
Материалы и методы. Постановка и решение задачи динамики движения выполнены на основе дифференциаль-
ных уравнений движения пузырьков и методов решения этих уравнений. 
Результаты. Построена модель движения пузырьков газа в слое жидкости, в которой пузырек пара представлен 

совокупностью двух подсистем, одна их которых совершает поступательное, а вторая – колебательное движение. 
В результате решения дифференциальных уравнений движения подсистем получены и исследованы зависимости 
скорости движения пузырьков газа от времени в активной зоне реактора. На базе полученных решений разрабо-
таны рекомендации для повышения эффективности тепломассообменных процессов в газожидкостных реакторах. 
Выводы. Для тестирования, совершенствования и практического использования полученных результатов необ-

ходима организация обмена актуальными данными измерительных приборов автоматической системы управле-
ния технологическими процессами реального объекта с предложенной компьютерной системой. 
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Modeling the oscillatory motion of a gas bubble in a liquid layer 

 
Abstract 
 

Background. Thermal and chemical processes in gas-liquid reactors often involve complex nature of the movement of 

components, which largely determines the process time, the contact area of the phases and, consequently, the efficiency 
and speed of thermal and chemical processes in processing installations. Special attention should be paid to the fluctuation 
in the velocity of gas bubbles in gas-liquid reactors observed in experiments, which significantly affect the efficiency and 
duration of the analyzed processes. In this regard, the development of models of the movement of gas bubbles in a liquid 
layer, taking into account velocity fluctuations is an urgent task from the point of view of improving the analyzed processes. 
Materials and methods. The formulation and solution of the problem of dynamics of oscillatory motion are based on 

differential equations of bubbles motion and methods for their solution.  
Results. A model of the movement of gas bubbles in a liquid layer has been developed, in which a vapor bubble is repre-

sented by a set of two subsystems, one of which performs translational motion, and the other – oscillatory motion. As a 
result of solving the differential equations of motion of subsystems, the dependences of the velocity of gas bubbles on time 
in the reactor core have been obtained and studied. Based on the obtained solutions, recommendations have been devel-
oped to improve the efficiency of heat and mass transfer processes in gas-liquid reactors. 
Conclusions. To test, improve and practically use the obtained results, it is necessary to organize the exchange of up-to-

date data of measuring devices of the automated control system of a real object with the proposed computer system. 
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Введение. Анализ процессов совместного 
движения потоков газа и жидкости в технологи-
ческом оборудовании привлекает внимание ис-
следователей как с научной [1–3], так и с практи-
ческой [4–7] точки зрения. Это связано в первую 
очередь с реализацией этих процессов как в раз-
личных энергетических установках, так и в обо-
рудовании смежных отраслей промышленности. 
Исследования данных процессов во многом 
сдерживаются сложным характером совмест-
ного движения фаз: движением пузырьков газа в 
жидкости. Возможный фазовый переход в пото-
ках теплоносителей, обусловленный испаре-
нием жидкости или конденсацией пара, суще-
ственно усложняет описание движения компо-
нентов. В первую очередь это связано с тем, что 
фазовый переход существенным образом (на 
два–три порядка) изменяет объем теплоносите-
лей, следовательно, скорости их движения и 

время пребывания компонентов в активной зоне 
реактора. Для обеспечения эффективного 
управления процессом и для оптимизации режи-
мов работы технологических систем исследова-
ние совместного движения многофазных сред 
является, безусловно, актуальной задачей. 

Одним из наиболее типичных примеров 
совместного движения многофазных потоков в 
энергетических установках является процесс 
всплытия пузырьков пара или газа в слое жидко-
сти. Данный процесс реализуется в экранных 
трубах и барабанах паровых котлов, в барботаж-
ных ступенях деаэраторов и смешивающих по-
догревателях. Вопросам аналитического и чис-
ленного моделирования свободного всплытия 
пузырьков газа посвящены многочисленные ис-
следования отечественных и зарубежных авто-
ров [1, 2, 8, 9]. Следует отметить, что при всплы-
тии пузырьков малого диаметра сохраняется их 
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сферическая форма, в то время как большие пу-
зырьки могут приобретать эллипсоидальную 
или более сложную форму. По мере того как пу-
зырек деформируется, начинает появляться не-
устойчивость, выражающаяся в зигзагообразной 
или спиралеобразной траектории движения пу-
зырька. В области построения численных мето-
дов описания движения пузырьков достигнуты 
существенные успехи, что позволяет моделиро-
вать определенный класс таких течений. Однако 
до сих пор универсальной вычислительной ме-
тодологии моделирования не выработано. Это 
во многом связано с различными методиками 
проведения экспериментальных исследований и 
с определением границ применения допущений, 
используемых при теоретических выводах. 

Следует отметить, что численные методы 
часто требуют определенного программного 
обеспечения, к которому в последнее время до-
ступ ограничен. В связи с этим задачи построе-
ния отечественных моделей и разработки до-
ступных программных средств приобретают осо-
бую актуальность. Важно отметить, что слож-
ность описания и численного решения представ-
ленных моделей должна обеспечивать получе-
ние решения с заданной точностью за приемле-
мое время. 

Наряду с задачами прямого расчета тех-
нологических систем особую актуальность в по-
следнее время приобретают обратные задачи 
диагностики [10], позволяющие оперативно 
определять отклонения в работе оборудования 
от номинальных режимов. 

Методы исследования. Для разработки, 
описания и диагностики анализируемой системы 
предлагается в качестве рабочего инструмента 
использовать постановку и решение прямых и 
обратных задач диагностики [10]. Под прямыми 
задачами в общем случае понимаются задачи, 
для которых заданы причины, а искомыми вели-
чинами являются следствия. Обратными будут 
задачи, в которых известны следствия, а неиз-
вестными выступают причины. Под прямыми за-
дачами динамики движения пузырьков в нашем 
случае понимается определение скорости движе-
ния и времени всплытия этих пузырьков в слое 
жидкости, а под обратными задачами – опреде-
ление параметров модели или диагностика воз-
можных неисправностей системы при заданных 
параметрах теплоносителей на входе и выходе. 
Следует отметить, что набор заданных парамет-
ров для каждой конкретной установки может раз-
личаться, что обусловливает возможные вариа-
ции в постановке обратной задачи. 

Результаты исследования. Целью 
настоящего исследования является описание в 
одномерной постановке прямой и обратной за-
дач колебательного движения пузырька газа при 
всплытии в неподвижном слое жидкости приме-
нительно к энергетическим теплообменным ап-
паратам. Для достижения цели предполагается 
решение следующих задач: 

1. Выбор системы моделирования в виде 
пузырька газа и представление этого пузырька 
совокупностью двух подсистем: одна из которых 
совершает колебательное движение, обуслов-
ленное поверхностными натяжениями оболочки 
и возможным изменением формы пузырька при 
всплытии; другая подсистема совершает посту-
пательное движение, характерное для пузырь-
ков правильной формы. 

2. Построение моделей скоростей движения 
для двух выбранных подсистем и вычисление ско-
рости системы через скорости ее подсистем. 

3. Разработка алгоритма и программного 
модуля для решения прямой задачи динамики 
движения пузырька в слое жидкости. Идентифика-
ция и верификация модели посредством сравне-
ния результатов расчета с данными других авто-
ров и данными экспериментальных исследований. 

4. Формулировка обратной задачи диагно-
стики состояния системы по известным динами-
ческим характеристикам ее подсистем. 

Объект исследования и алгоритм его 
представления в виде двух подсистем с указа-
нием действующих на подсистемы сил показан 
на рис. 1. Моделируемый пузырек газа (а) пред-
ставляется в виде двух подсистем (б): подсисте-
мой массой m1, совершающей колебательное 
движение (в), и подсистемой массой m2, совер-
шающей поступательное движение (г). 

 

б)

x1

Fу

в)a)

x2

г)

Fт

Fс

Fа

m1

m2

m1

m2

 
 
Рис. 1. Схема системы моделирования пузырька   

 
Модель предлагаемой системы представ-

лена совокупностью двух моделей ее подсистем: 
модель подсистемы, совершающей колебатель-
ное движение массой m1 (первый пузырек), и мо-
дель подсистемы, совершающей поступательное 
движение массой m2 (второй пузырек). 

При построении модели движения для 
первой колебательной подсистемы считается, 
что тело массой m1 находится в положении рав-
новесия, а отклонение от этого положения рав-
новесия сопровождается возникновением силы 
упругости, которая обусловливается деформа-
цией оболочки и которая стремится вернуть этот 
пузырек в положение равновесия: 

1 1 уF k x .  

Физическая природа силы упругости обу-
словливается деформацией оболочки пузырька 
при движении. В первом приближении при по-
строении модели считается, что сила упругости 
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линейно зависит от смещения из положения 
равновесия и определяется деформацией обо-
лочки пузырька при движении. При этом сам ме-
ханизм деформации и изменение формы пу-
зырька подробно не рассматривается, а описы-
вается интегральной линейной силой упругости. 
Для описания одномерного движения подси-
стемы первого пузырька выбрана вертикальная 
ось координат x1, направление которой показано 
на рис. 1. На пузырек действует сила упругости, 
направленная к положению равновесия или к 
точке, в которой сила упругости равна нулю. 
Движение подсистемы в этом случае описыва-
ется дифференциальным уравнением вида [11] 

2
1 1 1

2
1

 
d x k x

mdt
,     (1) 

где x1 – координата первого пузырька; t – время 
процесса; m1 – масса пузырька; k1 – коэффициент 
эффективной жесткости, которая определяется 
упругостью оболочки пузырька.  

Решение (1) записывается в виде [11] 

 1 0 sin ,    x A t     (2) 

где 1 1/  k m  – частота колебаний; А0,  – 

амплитуда колебаний и начальная фаза, 
которые определяются из начальных условий  
t = 0,  x = x0, v = v0: 

2
2 0

0 0 2
; 



v
A x  

  0

0


 

x
tg

v
. 

Скорость первого пузырька выражается 
через первую производную координаты по 
времени:  

 1
1 0 cos     

dx
v A t

dt
.   (3) 

При описании динамики второй подси-
стемы, участвующей в поступательном движе-
нии, считается, что на тело действуют сила Ар-
химеда, сила сопротивления и сила тяжести. 
Сила Архимеда (FA), равная весу вытесненной 
жидкости, записывается в виде  

А 2 жF V g  , 

где V2 – объем пузырька; g – ускорение 

свободного падения; ж – плотность жидкости.  
Линейная сила сопротивления (FС), действу-

ющая на пузырек со стороны жидкости, направ-
ленная в противоположную сторону от направле-
ния движения, представляется в виде [12] 

2 2СF Sk v  ,  

где v2 – скорость пузырька; S – поперечное сече-
ние пузырька; k2 – коэффициент сопротивления. 

Сила тяжести (FТ) в выбранной системе 
координат описывается следующим образом:  

т 2 F g m .  

Уравнение второго закона Ньютона после 
его деления на массу записывается в виде 

2
2

2
2 2

  СА Fd x F
g

m mdt
,    (4) 

где x2 – координата второй подсистемы, или 
пузырька массой m2. 

Уравнение (4) после замены второй произ-
водной координаты по времени на первую про-
изводную скорости по времени преобразуется к 
виду 

2
2 

dv
a bv

dt
,     (5) 

где постоянные коэффициенты a и b вычисля-
ются по выражениям: 

ж

г


 



g
a g ;  

2

2


k S

b
m

, 

где г – плотность газа. 
Решение уравнения (5) при начальных 

условиях  

2 200


t
v v  

записывается в виде  

2 20( ) exp( )
 

    
 

a a
v t v bt

b b
.   (6) 

Зная скорость движения и массу каждой 
подсистемы, скорость системы находится с 
учетом скорости движения первой подсистемы 
относительно второй подсистемы по формуле [13] 

1 2 1 2 2

1 2

( ) 




v v m v m
v

m m
.   (7) 

Координата центра масс системы опреде-
ляется по известным координатам подсистем [13]: 

1 1 2 2

1 2






x m x m
x

m m
.     (8) 

На основании разработанной математиче-
ской модели движения (3), (6)–(8) для расчета 
скорости и координаты пузырька в слое жидко-
сти предложен специальный алгоритм (рис. 2). 
Представленный алгоритм реализован в про-
граммном пакете на языке Matlab. Расчетный 
пример по предложенной модели скорости дви-
жения пузырька выполнен для следующих исход-

ных данных: плотность жидкости ж = 1000 кг/м3; 

плотность пара г = 1 кг/м3; ускорение свобод-
ного падения g = 10 м/с2. 
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Ввод исходных данных

Расчет скорости колебательного 

движения  (3)

Расчет скорости поступательного 

движения  (6)

Расчет скорости   (7) и координаты (8) 

пузырька

Вывод результатов расчета

 
 
Рис. 2. Алгоритм расчета скорости движения и коор-
динаты пузырька в слое жидкости 

 
Результаты расчетных исследований, про-

веденных согласно представленному на рис. 2 
алгоритму, приведены на рис. 3 в виде зависи-
мости скорости движения пузырька при всплы-
тии от времени. 
 

 
Рис. 3. Расчетная зависимость скорости движения  
пузырька при всплытии от времени 

 
Анализ полученных результатов (рис. 3) по-

казывает, что разработанная модель позволяет 
описывать колебание скорости пузырька в слое 
жидкости. Следует отметить, что предложенная 
модель позволила определить частоту колебания 
скорости пузырька, которая совпала с опублико-
ванными результатами других авторов [1], что яв-
ляется подтверждение правильности заложенных 
в представленную модель допущений.  

Для демонстрации прогностических воз-
можностей разработанной модели на рис. 4, 5 
представлены результаты расчетных исследо-
ваний. 

На рис. 4 представлена расчетная зависи-
мость максимальной скорости движения пу-
зырька 1 и амплитуды колебания его скорости 2 
от соотношения масс пузырьков рассматривае-
мых подсистем. Следует отметить, что увеличе-
ние массы пузырька, согласно полученным ре-
зультатам, приводит к увеличению скорости пу-

зырька при всплытии, что согласуется с много-
численными данными экспериментальных ис-
следований, приведенными на рис. 6. При этом 
найденная по результатам расчетов амплитуда 
колебания скорости с ростом массы пузырька 
уменьшается. 

 

 
Рис. 4. Расчетные зависимости максимальной скоро-
сти движения (1) и амплитуды колебания скорости A0 
(2) пузырька от соотношения масс пузырьков рассмат-
риваемых подсистем 

 

 
Рис. 5. Расчетная зависимость максимальной скоро-
сти движения пузырька (1) и амплитуды колебания 
скорости A0 (2) от диаметра пузырька  

 
На рис. 5 представлена расчетная зависи-

мость максимальной скорости движения пу-
зырька 1 и амплитуды колебания скорости 2 от 
диаметра пузырька. Следует отметить, что уве-
личение размера пузырька также приводит к 
увеличению скорости всплытия, однако ампли-
туда колебания скорости, в отличие результа-
тов, приведенных на рис. 4, практически не ме-
няется. 

Идентификация и верификация модели 
проведены косвенно, посредством сравнения 
полученных результатов с результатами экспе-
риментальных данных, представленными на 
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рис. 6. Результаты экспериментальных исследо-
ваний по определению зависимости установив-
шейся скорости всплытия пузырьков от их раз-
мера получены разными авторами [8, 9]. Анализ 
приведенных данных свидетельствует о суще-
ственном разбросе результатов и, следова-
тельно, о наличии возможных неучтенных фак-
торов при проведении экспериментов. Следует 
отметить, что рассчитанные значения, получен-
ные в рамках предложенной одномерной мо-
дели (3)–(7), находятся в интервале варьирова-
ния приведенных экспериментальных данных, 
что является подтверждением адекватного опи-
сания моделью экспериментальных результа-
тов, а также свидетельствует о необходимости 
дальнейшего проведения расчетных и экспери-
ментальных исследований с уточнением факто-
ров и условий проведения испытаний. 

  
Рис. 6. Результаты экспериментальных исследований 
по определению установившейся скорости всплытия 
пузырьков в зависимости от размера пузырьков [8, 9]  

 
Найденное решение прямой задачи коле-

бательного движения пузырька в слое жидкости 
позволяет перейти к постановке и решению об-
ратной задачи диагностики состояния тепломас-
сообменных систем с двухфазным течением по-
токов. В данном случае предлагается в качестве 
диагностического признака использовать ча-
стоту колебаний скорости пузырька. При этом 
причины отклонения значений частоты от нор-
мативных планируется диагностировать с ис-
пользованием представленного математиче-
ского описания. 

Выводы. Разработанная одномерная ма-
тематическая модель движения пузырьков газа 
в неподвижном слое жидкости, описывающая ко-
лебание скорости пузырька при всплытии, и по-
лученные в результате ее решения 
характеристики движения пузырьков газа в реак-
торе позволяют управлять эффективностью 
основных процессов в установке. 

Проведенная проверка адекватности 
модели показала качественно верное описание 

характера движения пузырьков в рассмотренном 
диапазоне варьирования параметров. 

Для тестирования, совершенствования и 
практического использования полученных ре-
зультатов необходима организация обмена ак-
туальными данными измерительных приборов 
автоматической системы управления технологи-
ческими процессами (АСУТП) реального объ-
екта с предложенной компьютерной системой. 

Предложенный подход к решению прямой 
задачи описания колебательного движения пу-
зырька в слое жидкости позволяет ставить и ре-
шать обратные задачи диагностики состояния 
тепломассообменных систем с двухфазными 

потоками. 
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