Методика проекционной идентификации параметров настраиваемой модели синхронного двигателя с постоянными магнитами и индикаторы информативности конечных фрагментов данных
А.С. Глазырин, Е.И. Попов, В.А. Копырин
Вестник ИГЭУ, 2025 г. выпуск 6, сс. 69—78
Скачать PDF
Состояние вопроса. В условиях перевода нефтяных скважин в прерывистые режимы эксплуатации возникает необходимость построения замкнутых бездатчиковых систем управления электроприводами погружных установок, в том числе с синхронными двигателями с постоянными магнитами. Для реализации данных систем требуется разработка эффективных методов динамической идентификации параметров настраиваемой модели электродвигателя в связи с циклическим изменением теплового режима его работы. Существующие методы идентификации на сегодняшний день сталкиваются с проблемой высоких вычислительных затрат и отсутствием априорной информации о характере помех в измерительных каналах. Тем самым актуальной задачей является разработка новых робастных методов идентификации параметров настраиваемых моделей динамических систем, в частности погружного электропривода на базе синхронных двигателей с постоянными магнитами.
Материалы и методы. Оценка электромагнитных параметров синхронного двигателя с постоянными магнитами осуществлена с использованием методов идентификации параметров настраиваемых математических моделей нестационарных динамических систем. Для аппроксимации производной в дискретном времени использована неявная многошаговая разностная схема.
Результаты. Разработана методика проекционной идентификации параметров настраиваемых моделей динамических систем и апробирована на настраиваемой модели статора синхронного двигателя с постоянными магнитами для получения его электромагнитных параметров. Предложены индикаторы информативности конечного фрагмента данных на основе анализа геометрических характеристик ведущих гиперплоскостей в постановке задачи наименьших квадратов. Получены оценки электромагнитных параметров настраиваемой модели синхронного двигателя с постоянными магнитами с относительными ошибками оценивания в режиме частотного пуска на холостом ходу в 26 % и 78 % для активного сопротивления и индуктивности обмотки статора соответственно и в режиме работы под нагрузкой 5,5 % и 39 %. Полученный индикатор информативности конечного фрагмента данных на основе угла между ведущими гиперплоскостями позволяет оценивать обусловленность задачи без непосредственного вычисления собственных или сингулярных чисел информационной (симметричной, положительно-определенной) матрицы метода наименьших квадратов.
Выводы. Предложенные методика оценивания параметров настраиваемых моделей синхронного двигателя с постоянными магнитами и индикаторы информативности конечного фрагмента данных могут быть использованы для проектирования замкнутых систем электропривода погружных установок, находящихся в режиме прерывистой эксплуатации.
1. Панкратов В.В. Вентильный электропривод: от стиральной машины до металлорежущего станка и электровоза // Электронные компоненты. – 2007. – № 2. – С. 68–77.
2. Воеков В.Н., Мещеряков В.Н., Крюков О.В. Вентильный электропривод для погружных нефтяных насосов с импульсным преобразователем напряжения в звене постоянного тока преобразователя частоты и релейным управлением инвертора напряжения // Вестник ЮУрГУ. Сер. Энергетика. – 2020. – Т. 20, № 2. – С. 110–119.
3. Карпюк А.В. Энергоэффективные УЭЦН с вентильными электродвигателями // Инженерная практика. – 2017. – № 5. – С. 14–19.
4. Тагирова К.Ф., Нугаев И.Ф. Концептуальные основы автоматизации управления установками электроцентробежных насосов нефтедобывающих скважин // Мехатроника, автоматизация, управление. – 2020. – Т. 21, № 2. – С. 102–109.
5. Кладиев С.Н. Обзор и критический анализ современного состояния и путей совершенствования систем электропитания и автоматического управления установок электроцентробежных насосов в прерывистых режимах эксплуатации нефтяных скважин // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2023. – Т. 334, № 9. – С. 203–215.
6. Надежность погружных нефтяных насосов при периодической эксплуатации / Е.А. Лихачёва, В.Г. Островский, Н.А. Лыкова, А.Н. Мусинский, П.А. Байдаров // PROНЕФТЬ. Профессионально о нефти. – 2021. – Т. 6, № 1. – С. 54–58.
7. Уразаков К.Р., Рукин М.В., Борисов А.О. Моделирование тепловых процессов в погружном двигателе электроцентробежного насоса, работающего в периодическом режиме // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2023. – Т. 334, № 4. – С. 62–71.
8. Фурсов В.А. Идентификация систем по малому числу наблюдений. – Самара: Изд-во СГАУ, 2007. – 81 с.
9. Авдеев А.С., Осипов О.И. Идентификация электрических параметров синхронного двигателя с постоянными магнитами // Электротехнические системы и комплексы. – 2021. – № 3(52). – С. 38–46.
10. Авдеев А.С., Осипов О.И. Идентификация параметров синхронных двигателей с постоянными магнитами на основе их частотного анализа // Вопросы электромеханики. Труды ВНИИЭМ. – 2020. – Т. 174, № 1. – С. 8–14.
11. Базылев Д.Н., Бобцов А.А., Пыркин А.А., Чежин М.С. Алгоритмы идентификации параметров синхронного двигателя с постоянными магнитами // Мехатроника, автоматизация, управление. – 2016. – Т. 17, № 3. – С. 193–198.
12. Вдовин В.В. Адаптивные алгоритмы оценивания координат бездатчиковых электроприводов переменного тока с расширенным диапазоном регулирования: дис. ... канд. техн. наук: 05.09.03 / НГТУ. – Новосибирск, 2014. – 246 с.
13. Double update intelligent strategy for permanent magnet synchronous motor parameter identification / S. Zhou, D. Wang, M. Du, et al. // Computers, Materials and Continua. – 2022. – Vol. 74, No. 2. – P. 3391–3404.
14. Gao Y., Wang X., Chen Q. Characteristic model-based adaptive control with genetic algorithm estimators for four-PMSM synchronization system // International Journal of Control, Automation and Systems. – 2020. – Vol. 18. – P. 1605–1616.
15. Liu K., Zhu Z.Q. Quantum genetic algorithm based parameter estimation of PMSM under variable speed control accounting for system identifiability and VSI nonlinearity // IEEE Transactions on Industrial Electronics. – 2014. – Vol. 62, No. 4. – P. 2363–2371.
16. Виноградов А.Б. Векторное управление электроприводами переменного тока. – Иваново, 2008. – 298 с.
17. Сипайлов Г.А., Кононенко Е.В., Хорьков В.А. Электрические машины (специальный курс). – М.: Высш. шк., 1987. – 287 с.
18. Васюков В.Н. Общая теория связи. – Новосибирск: Изд-во НГТУ, 2017. – 580 с.
19. Белодедов М.В. Методы проектирования цифровых фильтров. – Волгоград: Изд-во Волгоградского государственного университета, 2004. – 64 с.
20. Сравнительный анализ частотных характеристик вариантов построения цифровых моделей фильтров нижних частот компонентов электротехнических комплексов / А.С. Глазырин, Е.И. Попов, С.С. Попов и др. // Известия Томского политехнического университета. Промышленная кибернетика. – 2024. – Т. 2, № 3. – С. 9–19.
21. Попов Е.И., Глазырин А.С., Копырин В.А. Влияние методов дискретизации на обусловленность информационной матрицы и характер формирования гиперсфер ошибок в задачах оценивания параметров по малому числу наблюдений // Системы анализа и обработки данных. – 2025. – Т. 97, № 1. – С. 85–104.
22. Коновалов В.И. Идентификация и диагностика систем. – Томск: Изд-во Томского политехнического университета, 2010. – 163 с.
23. Баландин М.Ю., Шурина Э.П. Методы Решения СЛАУ большой размерности. – Новосибирск: Изд-во НГТУ, 2000. – 70 с.
24. Синицын И.Н. Фильтры Калмана и Пугачева. – М.: Университетская книга; Логос, 2006. – 640 с.

