Русская версия English version

Study of self-starting mode parameters of complex load electric motors on a simulation model taken into account when selecting relay protection settings of high-voltage transmission lines

M.V. Dvoynenkov, V.A. Shuin

Vestnik IGEU, 2025 issue 3, pp. 28—38

Download PDF

Abstract in English: 

Background. When selecting the settings for the backup stages of distance protection of the electric power transmission lines, we should consider the parameters of the self-starting mode of load electric motors, characterized by the Kstr coefficient of current increase in the protected line and the jstr angle of the load impedance. The available methods for selecting the settings of the backup stages of the line distance protection, as a rule, consider only the approximate values of the Kstr coefficient. The jstr angle is often assumed to be equal to the joper angle of impedance at the “terminals” of protection in the maximum operating mode without considering the self-starting of the load motors. Errors caused by the inaccuracy of determining the parameters Kstr and jstr may be the reason for a decrease in the selectivity and sensitivity of the backup stages of the line distance protection, i.e. the effectiveness of remote backup. To clarify the available methods for selecting the settings of the line distance protection, an urgent task is to study the dependencies of the parameters of the self-starting mode Kstr and jstr on the proportion and type of motor load as a part of the complex load.

Materials and methods. To study the dependencies of the parameters Kstr and jstr of the self-starting mode on the proportion and composition of the motor load in the complex load the MATLAB software package is used with the SimPowerSystems package, designed for modeling electrical devices and systems. The model of the object under study includes a 110(220) kV power supply, a 110(220) kV line with a 110(220)/6(10) kV step-down transformer at the end of the line, a 6(10) kV network section with cable lines for supplying a group of high-voltage asynchronous electric motors (AMHV) and a 6(10) kV step-down transformer 6(10)/0,4 kV for supplying a group of low voltage asynchronous electric motors (AMLV). The parameterization of the model has been carried out considering the real characteristics of its elements and methods for calculating the parameters of equivalent circuits.

Results. The authors have proposed an approach to approximate calculation of self-starting parameters based on data about the typical consumers of a complex load node with load division into three categories: AMHV, AMLV and static load. It is shown that the main factors influencing the parameters Kstr and jstr of the self-starting mode on 110–220 kV transmission lines are the proportions of AMHV KAMHV, AMLV KAMLV and their ratio in the complex load. The dependences of the parameters Kstr and jstr of the self-starting mode on the proportion of the motor load in the complex load, as well as the dependence jstr = f(Kstr), are obtained.

Conclusions. The obtained dependences Kstr = f (KAMHV, KAMLV), jstr = f(KAMHV, KAMLV) and jstr = f(Кstr) can be used to clarify the methods to calculate the settings of backup stages of 110–220 kV line distance protection. It will increase the efficiency of remote backup in high-voltage electric networks.

References in English: 

1. Fedoseev, A.M., Fedoseev, M.A. Releynaya zashchita elektroenergeticheskikh sistem [Relay protection of electrical power systems]. Moscow: Energoatomizdat, 1992. 528 p.

2. Nagay, V.I. Releynaya zashchita otvetvitel'nykh podstantsiy elektricheskikh setey [Relay protection of branch substations of electrical networks]. Moscow: Energoatomizdat, 2002. 312 p.

3. Syromyatnikov, I.A. Rezhimy raboty asinkhronnykh i sinkhronnykh elektrodvigateley [Operating modes of asynchronous and synchronous electric motors]. Moscow; Leningrad: Gosenergoizdat, 1963. 528 p.

4. Golodnov, Yu.M., Khorenyan, A.Kh. Samozapusk elektrodvigateley [Self-starting of electric motors]. Moscow: Energiya, 1974. 144 p.

5. Dorodnova, T.N., Rudman, A.A. (ed.)  Rukovodyashchie ukazaniya po releynoy zashchite. Vypusk 7. Distantsionnaya zashchita liniy 35–330 kV [Guidelines for relay protection. Issue 7. Distance protection of 35–330 kV lines]. Moscow; Leningrad: Energiya, 1966. 172 p.

6. Metodicheskie ukazaniya po raschetu i vyboru parametrov nastroyki distantsionnykh zashchit liniy elektroperedachi 110 kV i vyshe [Guidelines for calculating and selecting parameters for setting up distance protection for power transmission lines of 110 kV and higher]. JSC SO UES. Moscow, 2021. Available at: https://www.soups.ru/fileadmin/files/laws/standards/method_distanc_protect_power_lines_281123.pdf

7. Ul'yanov, S.A. Elektromagnitnye perekhodnye protsessy v elektricheskikh sistemakh [Electromagnetic transients in electrical systems]. Moscow: Energiya, 1970. 520 p.

8. Shabad, M.A. Raschety releynoy zashchity i avtomatiki raspredelitel'nykh setey [Calculations of relay protection and automation of distribution networks]. Leningrad: Energoatomizdat, 1985. 296 p.

9. Shabad, M.A. Raschety releynoy zashchity i avtomatiki raspredelitel'nykh setey [Calculations of relay protection and automation of distribution networks]. Saint-Petersburg: PEIPK, 2003. 350 p.

10. Neklepaev, B.N. (ed.) Rukovodyaschie ukazaniya po raschyotu tokov korotkogo zamykaniya i vyboru elektrooborudovaniya: RD 153-34.0-20.527-98 [Guidelines for calculating short-circuit currents and selecting electrical equipment: RD 153-34.0-20.527-98]. Moscow: Izdatel'stvo NTs ENAS, 2006. 144 p.

11. Zhukov, V.V. Korotkie zamykaniya v uzlakh kompleksnoy nagruzki elektricheskikh sistem [Short circuits in complex load nodes of electrical systems]. Moscow: Izdatel'stvo MEI, 1994. 224 p.

12. Chernykh, I.V. Modelirovanie elektrotekhnicheskikh ustroystv v MATLAB, SimPowerSystems i Simulink [Modeling of electrical devices in MATLAB, SimPowerSystems and Simulink]. Moscow: DMK Press; Saint-Petersburg: Piter, 2008. 288 p.

13. Bulychev, A.V., Gribkov, M.A. Analiz protsessov samozapuska elektrodvigateley v sovremennykh elektricheskikh raspredelitel'nykh setyakh s pozitsiy releynoy zashchity [Analysis of self-starting processes of electric motors in modern electrical distribution networks from the standpoint of relay protection]. Releynaya zashchita i avtomatizatsiya, 2023, no. 1(50), pp. 30–38.

Key words in Russian: 
ЛЭП высокого напряжения, релейная защита, дальнее резервирование, дистанционная защита, комплексная нагрузка, режим самозапуска, электродвигатель
Key words in English: 
high-voltage power transmission lines, relay protection, remote backup, distance protection, complex load, self-starting mode, electric motor
The DOI index: 
10.17588/2072-2672.2025.3.028-038
Downloads count: 
17