Русская версия English version

Modification of the methodology to determine the maximum values of transfer capability of network elements

I.S. Ekimov, A.A. Shuvalova, V.I. Polishchuk

Vestnik IGEU, 2025 issue 4, pp. 44—49

Download PDF

Abstract in English: 

Background. The development of digital technologies and the introduction of intelligent technique of energy system control into the operational dispatch management system significantly increases the efficiency of control of electric power modes. At the same time, new technologies are tightening the requirements for the quality, speed of receiving and processing information, especially in pre-emergency, emergency, post-emergency and forced modes of operation of the energy system. Thus, for effective control in a forced mode, i.e. when the load is higher than the nominal parameters, but lower than the maximum admissible limits, current data on the actual value of the transmission line capacity range is required considering the restrictions for a specific time. The purpose of the study is to test an artificial neural network for a high-speed method of updating data on the value of the maximum transfer capability of network elements.

Materials and methods. The study has been carried out using optimization methods, simulation of electrical network operation modes, artificial neural networks and methods for operating mode estimation.

Results. A method for adaptive capacity assessment has been developed. An automated control system for power flows in forced mode has been synthesized. It has been established that the use of an artificial neural network significantly increases the speed of calculating the actual value of transfer capacity due to the use of measurements for the time being. The accuracy of the permissible flow is acceptable and is configured by adjusting the weight coefficients of the neural network.

Conclusion: The method to determine the actual value of the transfer capability of a network element based on an artificial neural network is an effective means to accurately calculate the transfer capability for the time being. 

References in English: 
  1. Silva, B.N., Khan, M., Han, K. Futuristicheskoe ustoychivoe upravlenie energiey v intellektual'nykh sredakh: obzor strategiy snizheniya pikovoy nagruzki i reagirovaniya na spros, problem i vozmozhnostey [Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities]. Sustainability, 2020, vol. 12, no. 14, p. 5561. DOI: 10.3390/su1214556. EDN OZXEPM.
  2. Shuvalova, A.A., Polishchuk, V.I. Sintez intellektual'noy sistemy avtomatizirovannogo upravleniya peretokom aktivnoy moshchnosti po elektrosetevym elementam v predelakh zadannoy propusknoy sposobnosti [Synthesis of an intelligent automated control system for the flow of active power through electric grid elements within a given capacity]. Barnaul: Altayskiy gosudarstvennyy tekhnicheskiy universitet im. I.I. Pol-zunova, 2023. 94 p. EDN DHZPBQ.
  3. Aghaebrahimi, M.R., Golkhandan, R.K., Ahmadnia, S. Probabilistic Calculation of Total Transfer Capability (TTC) for Power Systems with Wind Farms using Evolutionary Algorithms. 9th International Conference on Power Electronics-ECCE Asia 63 Convention Center, Seoul, 1–5 June, 2015. Seoul (Korea), 2015, pp. 2135–2140.
  4. Audomvongseree, K., Yokoyama, A. Consideration of an appropriate TTC by probabilistic approach. IEEE Transactions on Power Systems, February 2004, vol. 19, issue 1.
  5. Li, W., Wang, P., Guo, Z. Opredelenie optimal'noy summarnoy propusknoy sposobnosti s ispol'zovaniem veroyatnostnogo podkhoda [Determination of optimal total transfer capability using a probabilistic approach]. IEEE Transactions on Power Systems. May 2006, vol. 21, issue 2.
  6. Oboskalov, V.P., Gerasimenko, A.A. Opredelenie predela moshchnosti, peredavaemoy po linii elektroperedachi, pri otsenke balansovoy nadezhnosti elektroenergeticheskikh sistem [Determination of the limit of power transmitted via a power transmission line when assessing the balance reliability of electric power systems]. Elektrichestvo, 2023, no. 7, pp. 6–19. DOI: 10.24160/0013-5380-2023-7-6-19. EDN XAJHES.
  7. Volkov, A.V. Analiz realizovannykh v programmnom obespechenii podkhodov k avtomatizatsii rascheta MDP/ADP. Primenenie programmnogo obespecheniya i neobkhodimost' ego razvitiya [Analysis of approaches implemented in software to automate the calculation of MDP/ADP. Application of software and the need for its development]. Trudy VI Mezhdunarodnoy nauchno-tekhnicheskoy konferegtsii “Elektroenergetika glazami molodezhi”, Ivanovo, 09–13 noyabrya 2015 g. [Proceedings of the VI International Scientific and Technical Conference “Electric power industry through the eyes of youth”, Ivanovo, November 09–13, 2015]. Ivanovo, 2015, vol. 1, pp. 79–82.  EDN VJZSIN.
  8. Wang, Zh., Zhou, Ya., Guo, Q., Sun, H. Interpretable Neighborhood Deep Models for Online Total Transfer Capability Evaluation of Power Systems. IEEE Transactions on Power Systems, 2022, vol. 37, no. 1, pp. 260–271. DOI: 10.1109/tpwrs.2021.3091710. EDN CZRKKC.
  9. Glazunova, A.M., Aksaeva, E.S. A method for total transfer capability estimation for generation of a trade-off solution on using available transfer capability of the controlled cutsets. Energy Systems Research, 2018, vol. 1, no. 2(2), pp. 5–12. DOI: 10.25729/esr.2018.02.0001. EDN YODPCX.
  10. Kiselev, A.Yu., L'vov, A.P., Vasil'ev, P.F. Aktual'nye problemy ekspluatatsii i sposoby povysheniya propusknoy sposobnosti ob"ektov elektroenergetiki Respubliki Sakha (Yakutiya) [Actual problems of operation and ways to increase the capacity of electric power facilities in the Republic of Sakha (Yakutia)]. Elektroenergiya. Peredacha i raspredelenie, 2024, no. 2(83), pp. 48–61. EDN AEAXAC.
  11. Batseva, N.L., Sukhorukov, V.A. Opredelenie dopustimykh peretokov moshchnosti na osnove adaptivnoy traektorii utyazheleniya [Determination of permissible power overflows based on adaptive weighting trajectory]. Vestnik MEI, 2021, no. 6, pp. 20–30. DOI: 10.24160/1993-6982-2021-6-20-30.
  12. Glazunova, A. Development of a Day-Ahead Demand Side Management Strategy to Improve the Microgrid Efficiency. IFAC-PapersOnLine, 2022, vol. 55, no. 9, pp. 256–261. DOI: 10.1016/j.ifacol.2022.07.045. EDN HHOZOZ.
  13. Polishchuk, V.I., Pankratov, A.V., Batseva, N.L., Shuvalova, A.A. Sopostavlenie i analiz staticheskikh kharakteristik nagruzki [Comparison and analysis of static load characteristics]. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM in Russia [Certificate of state registration of computer program in Russian Federation]. No. 2021617730, 2021.
  14. Aksaeva, E.S. Metodika otsenivaniya maksimal'no dopustimogo peretoka aktivnoy moshchnosti v rezhime real'nogo vremeni [Methodology for estimating the maximum allowable active power flow in real time]. Trudy molodykh uchenykh ISEM SO RAN «Sistemnye issledovaniya v energetike». Vyp. 47 [The Works of young scientists of ISEM SB RAS “System research in the energy sector”. Issue 47]. Irkutsk, 2017, pp. 7–14. EDN QHYQBF.
  15. Polishchuk, V.I., Postoyankova, K.Yu., Pankratov, A.V., Shuvalova, A.A. Sistema upravleniya peretokom aktivnoy moshchnosti po linii elektroperedachi v rezhime peregruzki [Control system for the flow of active power along power transmission lines in overload mode]. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM in Russia [Certificate of state registration of computer program in Russian Federation]. No. 2021681429, 2021.
Key words in Russian: 
пропускная способность сетевых элементов, искусственная нейронная сеть, методы оптимизации, допустимый переток мощности, оперативное диспетчерское управление, вынужденный режим работы энергосистемы, имитационное моделирование
Key words in English: 
transfer capability of network elements, artificial neural network, optimization methods, permissible power flow, operational dispatch control, forced mode of operation of the power system, simulation
The DOI index: 
10.17588/2072-2672.2025.4.044-049
Downloads count: 
3