Русская версия English version

Simulation modeling of parallel operation of wind power plants

V.L. Satchilembe, V.Ya. Frolov, D.V. Ivanov, D.Yu. Lantsev, A.I. Tadzhibaev, A.V. Pogorelov

Vestnik IGEU, 2025 issue 4, pp. 66—75

Download PDF

Abstract in English: 

Background. At present, despite the rapid development of wind energy, insufficient attention is paid to the issue of the impact of parallel operation of wind power plants with semiconductor converters on the quality of generated electrical energy. Thus, studies aimed at analyzing harmonic distortions of voltage and current in the power supply system with several wind generators that lead to significant additional losses of electrical energy, are relevant and necessary to improve the energy efficiency of wind energy systems.

Materials and methods. The study has been conducted using a simulation model of parallel operation of network wind power plants with a three-phase synchronous generator with permanent magnets developed in the Matlab/Simulink software. The object of the research is a power supply system consisting of six wind power plants connected to the grid using a transformer substation. The subject of the research is the energy efficiency of parallel operation of wind power plants of a wind energy system.

Results. The authors have obtained the results of modeling three synchronous generators with 4Q-converters to study the parallel operation of wind power plants as part of a wind energy system introduced into the network in maximum power mode. It is established that under unequal operating conditions of the plants due to different wind speeds (from 12 to 15 m/s) active powers equal to 1,39, 1,46 and 1,5 MW are generated respectively. The total generated active power of three generators on the 690 V bus is 4,35 MW, and the reactive power is 250 kvar. Additional losses of active power of higher harmonics amount to 10,48 % of the main losses in the elements of the power supply system. The values of the coefficients of harmonic component of voltage at a voltage of 690 V exceed the established standards.

Conclusions. The developed model is adequate and provides reliable modeling of wind energy system modes during parallel operation of wind power plants with synchronous generators with permanent magnets. Based on the results of modeling and calculation of capacities, the coefficients of higher harmonics and losses of electric power, it has been proved that parallel operation of generators increases the negative impact of powerful nonlinear devices on the electric grid.

References in English: 

1. Shatchilembe, V.L., Frolov, V.Ya., Tadzhibaev, A.I. Imitatsionnoe modelirovanie rezhimov raboty vetroelektrostantsii na baze trekhfaznogo sinkhronnogo generatora s postoyannymi magnitami [Simulation modeling of wind power plant operating modes based on a three-phase synchronous generator with permanent magnets]. Elektrichestvo, 2024, no. 8, pp. 60–69. DOI: 10.24160/0013-5380-2024-8-60-69.

2. Katalog avtomaticheskikh vyklyuchateley OptiMat-A [Catalog of OptiMat-A circuit breakers]. Available at: https://energo5.ru/wp content/u loads/2019/01/Katalog-OptiMat-A.pdf (date of access: 10.04.2025).

3. Prasol, D.A. Elektromagnitnaya sovmestimost' v vysokovol'tnykh rudnichnykh setyakh s moshchnymi tiristornymi elektroprivodami postoyannogo toka. Avtoref. diss. ... kand. tekhn. nauk [Electromagnetic compatibility in high-voltage mine networks with powerful thyristor DC electric drives. Abstr. cand. tech. sci. diss.]. Krasnoyarsk: SFU, 2018.

4. Zadorozhnyy, Ya. Vetryanye elektrostantsii. Kratkiy obzor svoystv i primeneniy [Wind Power Plants – A Brief Review of Properties and Applications]. Przegląd Elektrotechniczny, 2012, vol. 88, no. 10a, pp. 1–6.

5. Rama Krishna, A., Vijay Kumar, A., Gopala Krushna, A., Shanmugapriyan, J., Keertana, C. The Study of Solar and Wind Power Systems under Different Weather Conditions. E3S Web of Conferences, 2024, vol. 547, 03009. DOI.org/10.1051/e3sconf/2024 54703009.

6. Elistratov, V.V., Bogun, I.V., Denisov, R.S., Kudryasheva, I.G., Romanov, M.V. Resursy i tekhnologii ispol'zovaniya vozobnovlyaemykh istochnikov energii [Resources and Technologies for Using Renewable Energy Sources]. Saint-Petersburg: POLITECH-PRESS, 2022. 528 p.

7. Frolov, V.Ya., Smorodinov, V.V. Istochniki pitaniya [Power Sources]. Saint-Petersburg: Izdatel'stvo Politekhnicheskogo universiteta, 2008. 159 p.

8. Frolov, V.Ya., Surma, A.M., Vaserina, K.N. Silovaya poluprovodnikovaya elementnaya baza. Tekhnologiya proizvodstva. Konstruktivnye resheniya [Power semiconductor element base. Manufacturing technology. Design solutions]. Saint-Petersburg: Izdatel'stvo «Lan'», 2019. 228 p.

9. Frolov, V.Ya., Smorodinov, V.V., Zverev, S.G. Silovaya elektronika [Power electronics]. Saint-Petersburg: Izdatel'stvo Politekhnicheskogo universiteta, 2011. 281 p.

10. IGBT module MTKI-2400-17T. Available at: https://www.elvpr.ru/ru/catalog/silovye-poluprovodnikovye-pribory/igbt-i... (accessed 02.01.25).

11. Gordievskiy, E.M. Razrabotka modeli vetroenergeticheskoy ustanovki v programme Matlab/Simulink [Development of a wind power plant model in the Matlab/Simulink program]. Nauka YuUrGU, 2020, no. 7, pp. 25–32.

12. Ramadan, A. Obosnovanie parametrov sistem energosnabzheniya na osnove VIE dlya usloviy Sirii. Diss. … kand. tekhn. nauk [Justification of the parameters of energy supply systems based on renewable energy sources for Syrian conditions. Cand. tech.  sci. diss.]. Saint-Petersburg, 2020. 183 p.

13. Dolinger, S.Yu., Lyutarevich, A.G., Goryunov, V.N., Safonov, D.G., Cheremisin, V.T. Otsenka dopolnitel'nykh poter' moshchnosti ot snizheniya kachestva elektricheskoy energii v elementakh sistemy elektrosnabzheniya [Assessment of Additional Power Losses from a Decrease in the Quality of Electrical Energy in Elements of the Power Supply System]. Omskiy nauchnyy vestnik, 2013, no. 2, pp. 178–183.

Key words in Russian: 
ветроэнергетическая установка, параллельная работа генераторов, 4Q-преобразователь, имитационная модель, спектр гармонических искажений
Key words in English: 
wind power plants, parallel operation of generators, 4Q converter, simulation model, spectrum harmonic distortion
The DOI index: 
10.17588/2072-2672.2025.4.066-075
Downloads count: 
5