Русская версия English version

Automation of diagnostic processes of asynchronous electric motors at compressor stations

O.V. Kryukov, A.R. Kolganov, I.V. Gulyaev

Vestnik IGEU, 2025 issue 4, pp. 76—84

Download PDF

Abstract in English: 

Background. Statistical analysis of critical defects of drive units at compressor station shows that bearing and stator winding faults are the main reasons of motor failure. Existing systems for diagnosing the technical condition of drive electric motors developed on outdated methods of autonomous measurement of electrical, mechanical and thermal parameters do not provide reliable results. In this regard, the development of a comprehensive system for operational diagnostics of asynchronous electric motors is relevant.

Materials and methods. The authors have used the method of spectral analysis of the stator current to detect damage of electric motors and its hardware and software implementation.

Results. A method has been proposed for reliable determination of the causes of damage of electric motors based on the spectral composition of current harmonics and a device for its implementation. The use of the proposed diagnostic method allows incipient failure detection of electric motors and drive mechanisms. They are detection and localization of damage of the electrical parts of the stator and rotor, eccentricity, bearing wear, misalignment of the motor and mechanism shafts, belt and gear transmissions, working units (blades and pistons) of compressors.

Conclusions. The use of the developed universal diagnostic system for the technical condition of electric motor devices of compressor stations allows us to reduce labor costs for troubleshooting electric motors and driven mechanisms, identify equipment defects at early stages, effectively plan repair work, and increase the energy efficiency of power equipment.

References in English: 

1. Puzhaylo, A.F., Spiridovich, E.A., Voronkov, V.I., Kadin, V.I., Kryukov, O.V., Rubtsov, I.E., Stepanov, S.E., Titov, V.G., Papkov, B.V., Baranov, V.G., Milov, V.R., Sokolova, E.S., Bychkov, E.V., Zakharov, P.A., Mel'nikov, V.L., Babichev, S.A., Kryukov, A.O., Kiyanov, N.V., Ermolaev, A.I. Energosberezhenie i avtomatizatsiya elektrooborudovaniya kompressornykh stantsiy [Energy saving and automation of electrical equipment of compressor stations]. N. Novgorod: Vector TiS, 2010, vol. 1. 570 p.

2. Babichev, S.A., Bychkov, E.V. Analysis of technical condition and safety of gas-pumping units. Russian Electrical Engineering, 2007, vol. 81, pp. 489–492.

3. Zyuzev, A.M., Metel'kov, V.P., Mikhal'chenko, S.G. Otsenka teplovogo sostoyaniya elektrodvigateley peremennogo toka na KS MG [Assessment of the thermal state of AC electric motors at the gas compressor station]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2021, vol. 332, no. 1, pp. 88–96.

4. Vasenin, A.B., Stepanov, S.E. Metodologiya i sredstva operativnogo monitoringa elektrodvigateley na KS [Methodology and means of operational monitoring of electric motors at the gas compressor station]. Kontrol'. Diagnostika, 2019, no. 11, pp. 52–58.

5. Stepanov, S.E., Bychkov, E.V. Opyt primeneniya chastotno-reguliruemogo privoda ventilyatorov apparatov vozdushnogo okhlazhdeniya gaza [Experience in using a variable-frequency drive for fans of air-cooled gas cooling devices]. Trudy IX Mezhdunarodnoy (XX Vserossiyskoy) konferentsii AEP-2016 [Proceedings of the IX International (XX All-Russian) conference AEP-2016]. Perm', 2016, pp. 428–432.

6. Vasenin, A.B. Energoeffektivnye i ekologichnye ustanovki vozdushnogo okhlazhdeniya [Energy-efficient and environmentally friendly air-cooling units]. Trudy XIX Mezhdunarodnogo nauchno-promyshlennogo foruma «Velikie reki 2017»: v 3 t. [Proceedings of the scientific congress of the 19th International Scientific and Industrial Forum “Great Rivers 2017”. In 3 vol.]. Nizhny Novgorod: NGASU, 2017, pp. 93–96.

7. Puzhaylo, A.F., Spiridovich, E.A., Voronkov, V.I. Energosberezhenie i avtomatizatsiya elektrooborudovaniya kompressornykh stantsiy [Energy saving and automation of electrical equipment of compressor stations: monograph]. N. Novgorod: Vector TiS, 2011, vol. 2. 664 p.

8. Kryukov, O.V. Monitoring usloviy ekspluatatsii elektrodvigateley gazoperekachivayushchikh agregatov [Monitoring the operating conditions of electric motors of gas pumping units]. Kontrol'. Diagnostika, 2016, no. 12, pp. 50–58.

9. Kiyanov, N.V. Reshenie zadach promyshlennoy ekologii sredstvami elektrooborudovaniya i ASUT [Solving industrial ecology problems by means of electrical equipment and automated process control systems]. Avtomatizatsiya v promyshlennosti, 2009, no. 4, pp. 29–34.

10. Repin, D.G. Sistemy operativnogo monitoringa sostoyaniya energoustanovok dlya energeticheskoy bezopasnosti KS [Systems for operational monitoring of power plant conditions for compressor station energy safety]. Gazovaya promyshlennost', 2014, no. S(712), pp. 84–90.

11. Kryukov, O.V. Energoeffektivnye elektroprivody GPA na baze intellektual'nykh sistem upravleniya i monitoringa. Diss. … d-ra tekhn. nauk [Energy-efficient electric drives of gas pumping units based on intelligent control and monitoring systems. Dr. tech. sci. diss.]. Moscow: AO «Korporatsiya VNIIEM», 2015.

12. Kryukov, O.V. Scientific background for the development of intelligent electric drives for oil and gas process units. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Energetika, 2017, vol. 17, no. 1, pp. 56–62.

13. Gulyaev, I.V., Stepanov, S.E., Vasenin, A.B. Razrabotka prikladnogo programmnogo obespecheniya dlya sistemy geotekhnicheskogo monitoringa gazoprovodov [Development of application software for a geotechnical monitoring system for gas pipelines]. Kontrol'. Diagnostika, 2022, vol. 25, no. 6(288), pp. 48–59.

14. Rubtsova, I.E., Stepanov, S.E. Neyronechetkie modeli i algoritmy upravleniya i monitoringa mashin bol'shoy moshchnosti [Neuro-fuzzy models and algorithms for control and monitoring of high-power machines]. Materialy VI NTK «Upravlenie i informatsionnye tekhnologii» (UIT-2010) OAO «Kontsern TsNII “Elektropribor”» [Materials of the 6th STC “Control and Information Technologies” (UIT-2010) of JSC “Concern Central Research Institute “Elektropribor”]. Saint-Petersburg, 2010, pp. 160–162.

15. Stepanov, S.E. Modernizatsiya sistem upravleniya EGPA v usloviyakh deystvuyushchikh KS [Modernization of EGPA control systems under operating CS conditions]. Problemy avtomatizatsii i upravleniya v tekhnicheskikh sistemakh. MNTK [Problems of automation and control in technical systems. MNTK]. Penza: Penzenskiy gosudarstvennyy universitet, 2013, pp. 29–32.

16. Kryukov, O.V. Opyt proektirovaniya ASU TP nefteperekachivayushchikh stantsiy magistral'nykh nefteprovodov [Experience in designing automated process control systems for oil pumping stations of main oil pipelines]. Pribory i sistemy. Upravlenie, kontrol', diagnostika, 2017, no. 1, pp. 2–7.

17. Stepanov, S.E. Vybor metodov monitoringa i prognozirovaniya tekhnicheskogo sostoyaniya avtomatizirovannykh elektroprivodov energeticheskikh ob"ektov [Selection of methods for monitoring and forecasting the technical condition of automated electric drives of power facilities]. Kontrol'. Diagnostika, 2018, no. 11, pp. 32–39.

18. Babichev, S.A., Zakharov, P.A. Avtomatizirovannaya sistema operativnogo monitoringa privodnykh dvigateley [Automated system for operational monitoring of drive motors]. Avtomatizatsiya v promyshlennosti, 2009, no. 6, pp. 3–6.

19. Zakharov, P.A., Kiyanov, N.V. Vstroennaya sistema diagnostirovaniya i prognozirovaniya elektrodvigateley [Built-in system for diagnostics and forecasting of electric motors]. Kontrol'. Diagnostika, 2008, no. 11, pp. 43–49.

20. Kryukov, O.V., Stepanov, S.E., Serebryakov, A.V. Sovremennyy podkhod k organizatsii remonta po dannym prognoza tekhnicheskogo sostoyaniya i resursa elektrooborudovaniya [Modern approach to organizing repairs based on forecast data for the technical condition and resource of electrical equipment]. Gazovaya promyshlennost', 2017, no. 8(756), pp. 84–89.

21. Repin, D.G. Kontsepty sistem monitoringa tekhnicheskogo sostoyaniya kompressornykh stantsiy [Concepts of systems for monitoring the technical condition of compressor stations]. Kontrol'. Diagnostika, 2017, no. 12, pp. 30–35.

22. Voronkov, V.I., Rubtsova, I.E. Osnovnye ekologicheskie napravleniya i zadachi energosberezheniya pri proektirovanii ob"ektov OAO «Gazprom» [The main environmental directions and tasks of energy saving in the design of Gazprom OJSC facilities]. Gazovaya promyshlennost', 2013, no. 7(693), pp. 74–78.

23. Makridenko, L.A., Volkov, S.N., Sarychev, A.P., Kobel'kov, N.O. Monitoring i prognozirovanie tekhnicheskogo sostoyaniya elektromekhanicheskikh sistem energetiki [Monitoring and forecasting the technical condition of electromechanical power systems]. Moscow: JSC VNIIEM, 2017.

24. Zakharov, P.A., Kiyanov, N.V. Vstroennaya sistema diagnostirovaniya i prognozirovaniya elektroprivodnykh GPA [Built-in diagnostics and forecasting system for electric-driven GPA]. Kontrol'. Diagnostika, 2008, no. 11, pp. 43–49.

25. Gulyaev, I.V., Teplukhov, D.Yu. Bayesovskie modeli prinyatiya resheniy pri tekhnicheskom obsluzhivanii AEP [Bayesian models of decision making in maintenance of AEP]. Izvestiya vuzov. Elektromekhanika, 2022, no. 3, pp. 49–55.

Key words in Russian: 
диагностика электродвигателя, спектр гармоник тока, метод мониторинга электродвигателей, повышенная вибрация двигателей
Key words in English: 
electric motor diagnostics, current harmonic spectrum, electric motor monitoring method, increased motor vibration
The DOI index: 
10.17588/2072-2672.2025.4.076-084
Downloads count: 
5