Русская версия English version

Modeling and development of a diagnostic complex for circulating cooling system of an electric power plant

V.P. Zhukov, M.D. Fomichev, S.D. Gorshenin, R.S. Dudarev, E.A. Shuina

Vestnik IGEU, 2025 issue 5, pp. 81—91

Download PDF

Abstract in English: 

Background. The transition from scheduled preventive maintenance to condition-based maintenance is possible and effective with the availability of diagnostic tools that reliably determine the condition of the equipment. Therefore, the development of a system to diagnose the condition of equipment is an urgent task.

Materials and methods. The diagnostic problem is solved within the framework of matrix mathematical models of equipment based on the balanced equations of energy and mass, formulation and solution of inverse diagnostic problems of the equipment of the system under consideration.

Results. Based on matrix models and the solution of direct problems, inverse problems of diagnosing the distribution of water and air flows across the cross-section of a cooling tower have been formulated and solved. Based on the obtained solutions, recommendations have been developed to eliminate the detected defects. Diagnostic algorithms have been developed and successfully implemented in an information software package to diagnose the condition of equipment in a circulating cooling system.

Conclusions. To test, improve and use the system, it is necessary to exchange up-to-date data of automated control system measuring devices of a real facility.

References in English: 

1. Ryzhkin, V.Ya. Teplovye elektricheskie stantsii [Thermal power plants]. Moscow: Energoatomizdat, 1987. 328 p.

2. Isachenko, V.P. Teploobmen pri kondensatsii [Heat exchange during condensation]. Moscow: Energiya, 1977. 240 p.

3. Martynenko, O.G. (ed.) Spravochnik po teploobmennikam. V 2 t., t. 1 [Handbook of heat exchangers. In 2 vols., vol. 1]. Moscow: Energoatomizdat, 1987. 560 p.

4. Zhukov, V.P., Barochkin, E.V. Sistemnyy analiz energeticheskikh teplomassoobmennykh ustanovok [System analysis of energy heat and mass exchange plants]. Ivanovo, 2009. 176 p.

5. Kalatuzov, V.A. Povyshenie raspolagaemoy moshchnosti teplovykh elektrostantsiy s gradirnyami. Diss. … kand. tekhn. nauk [Increasing the available capacity of thermal power plants with cooling towers. Cand. tech. sci. diss.]. Ivanovo, 2003. 113 p.

6. Gorshkov, A.S. Tekhniko-ekonomicheskie pokazateli teplovykh elektrostantsiy [Technical and economic indicators of thermal power plants]. Moscow: Energiya, 1974. 240 p.

7. Kalatuzov, V.A., Pavlov, V.A. Raschet ogranicheniy elektricheskoy moshchnosti TETs, svyazannykh s rabotoy sistem tsirkulyatsionnogo vodosnabzheniya [Calculation of the limitations of the electric power of the CHP plant associated with the operation of circulating water supply systems]. Elektricheskie stantsii, 1987, no. 4, pp.18–22.

8. Samarskiy, A.A., Vabishchevich, P.N. Chislennye metody resheniya obratnykh zadach matematicheskoy fiziki [Numerical methods for solving inverse problems of mathematical physics]. Moscow: Izdatel'stvo LKI, 2009. 480 p.

9. Abramov, N.N. Vodosnabzhenie [Water supply]. Moscow: Stroyizdat, 1982. 440 p.

10. Aref'ev, Yu.I., Ponomarenko, B.C. Aerodinamicheskiy raschet bashennykh gradiren pri rekonstruktsii [Aerodynamic calculation of cooling towers during reconstruction]. Elektricheskie stantsii, 2000, no. 9, pp. 14–20.

11. Burov, V.D., Dorokhov, E.V., Elizarov, D.P. Teplovye elektricheskie stantsii [Thermal power plants]. Moscow: Izdatel'skiy dom MEI, 2007. 466 p.

12. Ved'gaeva, I.A. Matematicheskoe modelirovanie, issledovanie i povyshenie effektivnosti raboty promyshlennykh gradiren s setchatoy nasadkoy. Avtoref. diss. … kand. tekhn. nauk [Mathematical modeling, research and improvement of the efficiency of industrial cooling towers with mesh packing. Cand. tech. sci. diss.]. Kazan', 2003.

13. Zhukov, V.P., Fomichev, M.D., Barochkin, E.V., Shuina, E.A., Shuvalov, S.I. Kombinirovannaya model' teplomassoobmena v bashennykh gradirnyakh [Combined model of heat and mass exchange in cooling towers]. Vestnik ISEU, 2023, issue 5, pp. 90–96.

14. Zhukov, V.P., Fomichev, M.D., Vinogradov, V.N., Barochkin, A.E., Belyakov, A.N. Modelirovanie i raschet protsessa teplomassoobmena v bashennykh gradirnyakh sistem oborotnogo okhlazhdeniya TES i AES [Modeling and calculation of the heat and mass transfer process in tower-type cooling towers of CWS for thermal and nuclear power plants]. Vestnik IGEU, 2022, issue 3, pp. 57–63.

15. Ledukhovskiy, G.V., Pospelov, A.A. Raschet i normirovanie pokazateley teplovoy ekonomichnosti oborudovaniya TES [Calculation and normalization of indicators of thermal efficiency of the TPP equipment]. Ivanovo, 2015. 468 p.

16. Zhukov, V.P., Ledukhovskiy, G.V., Fomichev, M.D., Belyakov, A.N., Kuznetsov, M.A. Reshenie obratnoy zadachi teploperedachi v kondensatore turboustanovki so vstroennym teplofikatsionnym puchkom [Solution of the inverse problem of heat transfer in the condenser of a turbo plant with a built-in heat extraction bundle]. Vestnik IGEU, 2024, issue 1, pp. 85–91.

17. Venttsel', E.S. Teoriya veroyatnostey [Probability Theory]. Moscow: Vysshaya shkola, 2006. 575 p.

18. Fomichev, M.D., Zhukov, V.P. Raschetnyy analiz vliyaniya neravnomernosti raspredeleniya teplonositeley po secheniyu gradirni na temperaturu okhlazhdennoy vody [Calculation analysis of the influence of uneven distribution of coolants over the cross-section of a cooling tower on the temperature of chilled water]. Sbornik nauchnykh trudov Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Sostoyanie i perspektivy razvitiya elektro- i teplotekhnologii» (XXII Benardosovskie chteniya) [Proceedings of international scientific and technical conference “Current state and trends of the development of electrotechnics” (XXII Benardos Readings)]. Ivanovo, 2023, pp. 392–395.

19. Ledukhovskiy, G.V., Pospelov, A.A. Energeticheskie kharakteristiki oborudovaniya TES [Energy characteristics of thermal power plant equipment]. Ivanovo, 2014. 232 p.

Key words in Russian: 
система оборотного охлаждения, башенная градирня, конденсатор, циркуляционный насос, прямая задача диагностики, обратная задача диагностики, скорость ветра, распределение воздуха, многопоточный теплообмен, программно-диагностический комплекс
Key words in English: 
circulating cooling system, tower cooling tower, condenser, circulation pump, direct task, wind speed, air distribution, multithreaded heat exchange, heat exchange efficiency, reverse diagnostic task, diagnostic software package
The DOI index: 
10.17588/2072-2672.2025.5.081-091
Downloads count: 
7