Русская версия English version

Methodology for parameters projection identification of an adaptive permanent magnet synchronous motor and informativity indicators of finite data fragments

A.S. Glazyrin, E.I. Popov, V.A. Kopyrin

Vestnik IGEU, 2025 issue 6, pp. 69—78

Download PDF

Abstract in English: 

Background. Under the conditions of transferring oil wells into intermittent operating modes, there is a need to develop closed sensorless control systems of electric drives of submersible installations, including those with synchronous motors with permanent magnets. To implement these systems, it is necessary to develop effective methods for dynamic identification of the parameters of the electric motor model in connection with the cyclic change in the thermal mode of its operation. Currently, existing identification methods face the problem of high computational costs and the lack of a priori information on the nature of interference in the measuring channels. Thus, the task to develop new robust methods to identify the parameters of adaptive models of dynamic systems, in particular, a submersible electric drive based on synchronous motors with permanent magnets, becomes relevant.

Materials and methods. The paper discusses methods to identify parameters of adaptive mathematical models of nonstationary dynamic systems using the example of estimating electromagnetic parameters of a permanent magnet synchronous motor. An implicit multistep difference scheme is used to approximate the derivative in discrete time.

Results. The authors have developed a methodology for projection identification of parameters of adaptive models of dynamic systems and have tested it on an adaptive model of a stator of a synchronous motor with permanent magnets to obtain its electromagnetic parameters. The informativity indicators of the finite data fragment are proposed based on the analysis of the geometric characteristics of the leading hyperplanes in the formulation of the least squares problem. The proposed methodology for parameters projection identification of an adaptive model of a synchronous motor with permanent magnets made it possible to obtain estimates of its electromagnetic parameters with relative estimation errors of 26 % and 78 % for the active resistance and inductance of the stator winding, respectively, in the idle frequency start mode and 5,5 % and 39 % for the load mode. The informativity indicator of the finite data fragment obtained is based on the angle between the leading hyperplanes. It makes it possible to estimate the conditionality of the problem without directly calculating the eigenvalues or singular values of the information (symmetric, positive-definite) matrix of the least squares method.

Conclusions. The obtained methods for parameters estimation of adaptive models of permanent magnet synchronous motor and informativity indicators of the finite data fragment can be used to design closed electric drive systems of submersible installations operating in intermittent operation mode.

References in English: 

1. Pankratov, V.V. Ventil'nyy elektroprivod: ot stiral'noy mashiny do metallorezhushchego stanka i elektrovoza [Valve electric drive: from washing machine to metal-cutting machine and electric locomotive]. Elektronnye komponenty, 2007, no. 2, pp. 68–77.

2. Voekov, V.N., Meshcheryakov, V.N., Kryukov, O.V. Ventil'nyy elektroprivod dlya pogruzhnykh neftyanykh nasosov s impul'snym preobrazovatelem napryazheniya v zvene postoyannogo toka preobrazovatelya chastoty i releynym upravleniem invertora napryazheniya [Valve electric drive for submersible oil pumps with pulse voltage converter in the DC link of the frequency converter and relay control of the voltage inverter]. Vestnik YuUrGU. Seriya Energetika, 2020, vol. 20, no. 2, pp. 110–119.

3. Karpyuk, A.V. Energoeffektivnye UETsN s ventil'nymi elektrodvigatelyami [Energy-efficient ESPs with valve electric motors]. Inzhenernaya praktika, 2017, no. 5, pp. 14–19.

4. Tagirova, K.F., Nugaev, I.F. Kontseptual'nye osnovy avtomatizatsii upravleniya ustanovkami elektrotsentrobezhnykh nasosov neftedobyvayushchikh skvazhin [Actual Tasks of Oil-Wells Electric Submersible Pump Control Automation]. Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, vol. 21, no. 2, pp. 102–109.

5. Kladiev, S.N. Obzor i kriticheskiy analiz sovremennogo sostoyaniya i putey sovershenstvovaniya sistem elektropitaniya i avtomaticheskogo upravleniya ustanovok elektrotsentrobezhnykh nasosov v preryvistykh rezhimakh ekspluatatsii neftyanykh skvazhin [Review and critical analysis of the current state and ways to improve regulated power supplies and automatic control systems for electric centrifugal pumping units in intermittent operation of oil wells]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2023, vol. 334, no. 9, pp. 203–215.

6. Likhacheva, E.A., Ostrovskiy, V.G., Lykova, N.A., Musinskiy, A.N., Baydarov, P.A. Nadezhnost' pogruzhnykh neftyanykh nasosov pri periodicheskoy ekspluatatsii [Oil submersible pumps reliability during cyclic operation]. PROneft'. Professional'no o nefti, 2021, vol. 6, no. 1, pp. 54–58.

7. Urazakov, K.R., Rukiv, M.V., Borisov, A.O. Modelirovanie teplovykh protsessov v pogruzhnom dvigatele elektrotsentrobezhnogo nasosa, rabotayushchego v periodicheskom rezhime [Simulation of thermal processes in a submersible notor of an electric centrifugal pump operating in a periodic mode]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2023, vol. 334, no. 4, pp. 62–71.

8. Fursov, V.A. Identifikatsiya sistem po malomu chislu nablyudeniy [Identification of systems with a small number of observations]. Samara: Izdatel'stvo SGAU, 2007. 81 p.

9. Avdeev, A.S., Osipov, O.I. Identifikatsiya elektricheskikh parametrov sinkhronnogo dvigatelya s postoyannymi magnitami [Identification of electrical parameters of a permanent magnet synchronous motor]. Elektrotekhnicheskie sistemy i kompleksy, 2021, no. 3(52), pp. 38–46.

10. Avdeev, A.S., Osipov, O.I. Identifikatsiya parametrov sinkhronnykh dvigateley s postoyannymi magnitami na osnove ikh chastotnogo analiza [Identification of parameters of permanent magnet synchronous motors based on their frequency analysis]. Voprosy elektromekhaniki. Trudy VNIIEM, 2020, vol. 174, no. 1, pp. 8–14.

11. Bazylev, D.N., Bobtsov, A.A., Pyrkin, A.A., Chezhin, M.S. Algoritmy identifikatsii parametrov sinkhronnogo dvigatelya s postoyannymi magnitami [Algorithms for identifying parameters of a permanent magnet synchronous motor]. Mekhatronika, avtomatizatsiya, upravlenie, 2016, vol. 17, no. 3, pp. 193–198.

12. Vdovin, V.V. Adaptivnye algoritmy otsenivaniya koordinat bezdatchikovykh elektroprivodov peremennogo toka s rasshirennym diapazonom regulirovaniya. Diss. ... kand. tekhn. nauk [Adaptive algorithms for estimating coordinates of sensorless AC electric drives with an extended control range. Cand. tech. sci. diss.]. Novosibirsk, 2014. 246 p.

13. Zhou, S., Wang, D., Du, M., Li, Y., Cao, S. Double update intelligent strategy for permanent magnet synchronous motor parameter identification. Computers, Materials and Continua, 2022, vol. 74, no. 2, pp. 3391–3404.

14. Gao, Y., Wang, X., Chen, Q. Characteristic model-based adaptive control with genetic algorithm estimators for four-PMSM synchronization system. International Journal of Control, Automation and Systems, 2020, vol. 18, pp. 1605–1616.

15. Liu, K., Zhu, Z.Q. Quantum genetic algorithm based parameter estimation of PMSM under variable speed control accounting for system identifiability and VSI nonlinearity. IEEE Transactions on Industrial Electronics, 2014, vol. 62, no. 4, pp. 2363–2371.

16. Vinogradov, A.B. Vektornoe upravlenie elektroprivodami peremennogo toka [Vector control of AC electric drives]. Ivanovo, 2008. 298 p.

17. Sipaylov, G.A., Kononenko, E.V., Khor'kov, V.A. Elektricheskie mashiny (specialnyj kurs) [Electrical Machines (Special Course)]. Moscow: Vysshaya shkola, 1987. 287 p.

18. Vasyukov, V.N. Obshchaya teoriya svyazi [General theory of communication]. Novosibirsk: Izdatel'stvo NGTU, 2017. 580 p.

19. Belodedov, M.V. Metody proektirovaniya tsifrovykh fil'trov [Digital Filter Design Methods]. Volgograd: Izdatel'stvo Volgogradskogo gosudarstvennogo universiteta, 2004. 64 p.

20.  Glazyrin, A.S., Popov, E.I., Popov, S.S., Kopyrin, V.A., Kladiev, S.N., Leonov, A.P., Voronina, N.A., Kovalev, V.Z. Sravnitel'nyy analiz chastotnykh kharakteristik variantov postroeniya tsifrovykh modeley fil'trov nizhnikh chastot komponentov elektrotekhnicheskikh kompleksov [Comparative analysis of frequency responses of options for constructing low-pass filters of electrical systems digital models]. Izvestiya Tomskogo politekhnicheskogo universiteta. Promyshlennaya kibernetika, 2023, vol. 2, no. 3, pp. 9–19.

21. Popov, E.I., Glazyrin, A.S., Kopyrin, V.A. Vliyanie metodov diskretizatsii na obuslovlennost' informatsionnoy matritsy i kharakter formirovaniya gipersfer oshibok v zadachakh otsenivaniya parametrov po malomu chislu nablyudeniy [The influence of discretization methods on the conditionality of the information matrix and the nature of the formation of error hyperspheres in problems of parameter estimation based on a small number of observations]. Sistemy analiza i obrabotki dannykh, 2025, vol. 97, no. 1, pp. 85–104.

22. Konovalov, V.I. Identifikatsiya i diagnostika sistem [Identification and diagnostics of systems]. Tomsk: Izdatel'stvo Tomskogo politekhnicheskogo universiteta, 2010. 163 p.

23. Balandin, M.Yu., Shurina, E.P. Metody resheniya SLAU bol'shoy razmernosti [Methods for Solving Large-Dimensional SLAEs]. Novosibirsk: Izdatel'stvo NGTU, 2000. 70 p.

24. Sinitsyn, I.N. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. Moscow: Universitetskaya kniga; Logos, 2006. 640 p.

 

Key words in Russian: 
нестационарная динамическая система, настраиваемые модели, идентификация по малому числу наблюдений, метод наименьших квадратов, синхронный двигатель с постоянными магнитами, проекционная идентификация, ведущая гиперплоскость, проекционное сопровождение ведущей гиперплоскости, индикатор информативности
Key words in English: 
non-stationary dynamic system, adaptive models, identification by a small number of observations, least squares method, permanent magnet synchronous motor, projection identification, leading hyperplane, projection tracking of the leading hyperplane, data informativity indicators
The DOI index: 
10.17588/2072-2672.2025.6.069-078
Downloads count: 
7