Русская версия English version

On the use of guarding heaters to create adiabatic conditions in thermophysical experiments

A.K. Sokolov

Vestnik IGEU, 2025 issue 6, pp. 28—35

Download PDF

Abstract in English: 

Background. The thermophysical characteristics of materials are mainly determined by solving inverse problems of thermal conductivity over temperature fields obtained as a result of thermophysical experiments. To simplify the subsequent processing of the measured values of the temperature field parameters, in most cases they try to use one-dimensional temperature fields of unlimited plates or cylinders, which are created by organizing symmetrical heating or using special guarding heaters. Thus, the task to study the influence of guarding heaters on the temperature field of the plate is very relevant.

Materials and methods. The paper analyzes and checks the effectiveness of the method for creating adiabatic conditions using guarding heaters. To study the effect of guarding heaters on the temperature field of the material under study, a numerical-analytical model of the process and a computer program have been developed.

Results. Calculations of the temperature fields of a material (steel) in the form of a truncated cylinder and a ring with a guarding heater have been carried out. The error of creating adiabatic conditions for several methods of regulating the power of a guarding heater has been estimated.

Conclusions. It is established that none of the operating modes of the guarding heater can in principle create conditions of perfect adiabatic operation. It is shown that it is possible to select the parameters of a physical experiment at which the error of creating adiabatic conditions can be reduced to acceptable values.

 

References in English: 

1.  Yur'ev, B.P., Gol'tsev, V.A., Matyukhin, V.I., Sheshukov, O.Yu. Opredelenie teplofizicheskikh svoystv materialov metallurgicheskogo proizvodstva [Determination of thermophysical properties of materials for metallurgical production]. Ekaterinburg: OOO «UIPTs», 2014. 180 p.

2.  Fokin, V.M., Chernyshev, V.N. Nerazrushayushchiy kontrol' teplofizicheskikh kharakteristik stroitel'nykh materialov [Non-destructive testing of thermal and physical characteristics of building materials]. Moscow: Izdatel'stvo «Mashinostroenie−1», 2004. 212 p.

3.  Zhukov, N.P., Maynikova, N.F. Mnogomodel'nye metody i sredstva nerazrushayushchego kontrolya teplofizicheskikh svoystv materialov i izdeliy [Multi-model methods and means of non-destructive testing of thermophysical properties of materials and products]. Moscow: Izdatel'stvo «Mashinostronie−1», 2004. 288 p.

4.  Grysa, Kr. Inverse heat conduction problems // Heat Conduction − Basic Research. Intech Open. Available at: https://www.intechopen.com/books/heat-conduction-basic-research/inverse-heat-conduction-problems.

5.  Sokolov, A.K. Metod opredeleniya temperaturoprovodnosti i koeffitsienta teploprovodnosti po temperaturam poverkhnosti plastiny kak poluogranichennogo tela [Method to determine thermal diffusivity and thermal conductivity coefficient based on the surface temperatures of a plate as a semi-infinite body]. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya Metallurgiya, 2022, vol. 65, no. 1, pp. 57–65. https://doi.org/10.17073/0368-0797-2022-1-57-65

6.  Sokolov, A.K., Zhukov, V.P., Smirnov, N.N., Yarunina, N.N. Metod kompleksnogo opredeleniya zavisimosti teplofizicheskikh kharakteristik metalla ot temperatury resheniem obratnoy zadachi teploprovodnosti [Method for comprehensive determination of the dependence of the thermophysical characteristics of a metal on temperature by solving the inverse problem of thermal conductivity]. Vestnik IGEU, 2024, issue 6, pp. 23–30.

7.  Varfolomeev, B.G., Zhukov, N.P., Muromtsev, D.Yu., Selivanova, Z.M. Sposob nerazrushayushchego kontrolya teplofizicheskikh kharakteristik izdeliy iz metallopolimerov [Method of non-destructive testing of thermal characteristics of metal-polymer products]. Patent RF, no. 2247363, 2005.

8.  Lykov, A.V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow: Izdatel'stvo «Vysshaya shkola», 1967. 600 p.

9.  Isachenko, V.P. Osipova, V.A., Sukomel, A.S. Teploperedacha [Heat transfer]. Moscow: Energoizdat, 1981. 416 p.

10. Sokolov, A.K. Matematicheskoe modelirovanie nagreva metalla v gazovykh pechakh [Mathematical modeling of metal heating in gas furnaces]. Ivanovo, 2011. 396 p.

11. Dorfman, A.Sh., Didenko, O.I. Sposob sozdaniya adiabatnykh usloviy na odnoy iz poverkhnostey stenki [A method for creating adiabatic conditions on one of the wall surfaces]. Opisanie izobreteniya k avtorskomu svidetel'stvu, no. 399011 SSSR, 1973.  

12. Sokolov, A.K. Priemy proektirovaniya testov dlya programm, rasschityvayushchih temperaturnye polya [Techniques for designing tests for programs that calculate temperature fields]. Izvestiya vuzov. Chernaya metallurgiya, 1987, no. 7, pp. 144–147.

13. Karslou, G., Eger, D. Teploprovodnost' tverdykh tel [Thermal conductivity of solids]. Moscow: Nauka, 1964. 488 p.

14. Pekhovich, A.I., Zhidkikh, V.M. Raschety teplovogo rezhima tverdykh tel [Calculations of thermal regime of solids]. Leningrad: Energiya, 1968. 304 p.

Key words in Russian: 
теплофизический эксперимент, адиабатные условия, охранный нагреватель, задачи теплопроводности, численно-аналитическая метод
Key words in English: 
thermophysical experiment, adiabatic conditions, guarding heater, heat conduction problems, numerical-analytical method
The DOI index: 
10.17588/2072-2672.2025.6.028-035
Downloads count: 
5