1. Osovskiy, S. Neyronnye seti dlya obrabotki informatsii [Neural networks for information processing]. Moscow: Finansy i statistika, 2002. 344 p.
2. Barron, A.R. Statistical properties of artificial neural networks. Proceedings of the IEEE International Conference on Decision and Control. NewYork, 1989, рр. 280–285.
3. Alekseeva, I.Yu., Vedernikov, A.S., Skripachev, M.O. Prognozirovanie elektropotrebleniya s ispol'zovaniem metoda iskusstvennykh neyronnykh setey [Forecasting of power consumption using the method of artificial neural networks]. Vestnik SamGTU. Seriya Tekhnicheskie nauki, 2010, рр. 135–138.
4. Gofman, A.V. Usovershenstvovanie metodiki prognozirovaniya mnogonomenklaturnogo predpriyatiya s uchetom proizvodstvennoy deyatel'nosti [Improvement of the methods of forecasting a multiproduct enterprise taking into account its production activity]. Sbornik nauchnykh trudov Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Elektroenergetika glazami molodezhi» [Collected scientific works of the International scientific and technical conference “Electric Power Engineering in the Youth’s Eyes]. Samara: SamGTU, 2011, vol. 2, pp. 153–157.
5. Barron, A.R. Complexity regularization with applications to artificial neural networks. In G. Roussas (ed.) Nonparametric Functional Estimation. Boston, MA and Dordrecht, the Netherlands: Kluwer Academic Pub-lishers, 1990, pp. 561–576.
6. Solov'eva, I.A., Dzyuba, A.P. Prognozirovanie elektropotrebleniya s uchetom faktorov tekhnologicheskoy i rynochnoy sredy [Prediction of power consumption taking into account factors of the technological and market environment]. Nauchnyy dialog, 2013, no. 7(19), pp. 97–113.
7. Vedernikov, A.S., Balukova, E.A. Opredelenie korrelyatsionnykh zavisimostey mezhdu faktorami, vliyayushchimi na elektropotreblenie sobstvennykh nuzhd TETs [Determination of correlation dependences between factors influencing CHPP electric power consumption]. Izvestiya vuzov. Elektromekhanika, 2016, no. 6, pp. 110–113.
8. Galushkin, А.I. Teoriya neyronnykh setey. Kn. 1 [Theory of neural networks. Book 1]. Moscow: IPRZhR, 2001. 385 p.
9. Vedernikov, A.S., Balukova, E.A., Komasova, E.A. Postroenie neyronnykh setey dlya prognozirovaniya elektropotrebleniya sobstvennykh nuzhd TETs [Construction of neural networks for forecasting CHPP auxiliary power consumption]. Materialy VIII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii: «Elektroenergetika glazami molodezhi». V 3 t., t. 3 [Proceedings of the VIII International Scientific and Technical Conference: «Electric Power Engineering in the Youth’s Eyes». In 3 vol., vol. 3]. Samara: Samarskiy gosudarstvennyy tekhnicheskiy universitet, 2017, pp. 72–78.
10. Benn, D.V., Farmer, E.D. Sravnitel'nye modeli prognozirovaniya elektricheskoy nagruzki [Comparative models of electric load forecasting]. Moscow: Energoatomizdat, 1987. 200 p.
11. Cybenko, G. Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989, no. 2, pp. 303–314.
12. Kurbatskiy, V.G., Tomin, N.V. Prognozirovanie elektricheskoy nagruzki s ispol'zovaniem iskusstvennykh neyronnykh setey [Forecasting of electric load using artificial neural networks]. Elektrika, 2006, no. 7, pp. 26–32.
13. Barskiy, A.B. Neyronnye seti: raspoznavanie, upravlenie, prinyatie resheniy [Neural networks: recognition, management, decision-making]. Moscow: Finansy i statistika, 2004. 176 p. (Prikladnye informatsionnye tekhnologii).
14. Borovikov, V.P. Neyronnye seti. Statistica Neural Networks. Metodologiya i tekhnologii sovremennogo analiza dannykh [Neural networks. Statistica Neural Networks. Methodology and technologies of modern data analysis]. Moscow: Goryachaya liniya – Telekom, 2008. 392 p.
15. Khalafyan, A.A. STATISTICA 6. Statisticheskiy analiz dannykh [STATISTICA 6. Statistical analysis of data]. Moscow: Binom-Press, 2007. 512 p.
16. Vedernikov, A.S., Yarygina, E.A., Khamitov, R.N. Programma «Prognozirovanie elektropotrebleniya sobstvennykh nuzhd TETs na osnove neyronnoy seti» [Computer program «Forecasting of thermal power plant auxiliary power consumption based on neural networks»]. Svidetel'stvo o registratsii elektronnogo resursa № 23603 [Certificate of registration of digital resource No. 23603]. Moscow: OFERNIO, 2018.