Русская версия English version

A numerical study of heat transfer in the in-line tube bundle under pulsating fluid flow conditions

A.I. Khaibullina, A.R. Khairullin

Vestnik IGEU, 2019 issue 4, pp. 12—21

Download PDF

Abstract in English: 

Background. Shell-and-tube heat exchangers are widely used in different industries. Even a small increase in the efficiency of shell-and-tube heat exchangers can lead to significant energy savings. One of the ways to improve the efficiency of shell-and-tube heat exchangers is the use of pulsating flows for the enhancement of heat exchange. Despite the fact that heat transfer in the tube bundle cross flow in steady-state conditions has been studied quite well, there is limited data on heat transfer in pulsating flow, which means that the problem of finding regularities of heat transfer with pulsating flows in tube bundles is still important.

Materials and methods. The work employs the incompressible Reynolds averaged Naviere-Stokes (URANS) equations and the continuity equation. Heat transfer is described by the convective heat transfer (Fourier-Kirchhoff) equation. The calculations are performed using Ansys Fluent.

Results. A numerical study has been conducted of the effects of forced asymmetrical pulsating flow on heat exchange in in-line tube bundle cross-flow conditions. In the numerical experiment the Reynolds number Re ranged from 1000 to 2000, the relative pulsating amplitude A/D – from 1 to 2, the Strouhal number Sh – from 0,77 to 1,51, the Prandtl number and the duty cycle had fixed values: Pr = 7,2, y = 0,25. The relative transverse and longitudinal pitch was s1,2/D = 1,3. It has been found that pulsating flows lead to the enhancement of heat transfer in the whole range of the studied operating parameters. An increase in A/D and Sh leads to bigger Nusselt number Nu. An increase in the Re number leads to a decrease in the Nu ratio in pulsating and steady flow conditions.

Conclusions. The general correlation obtained based on the numerical study results can be used to predict heat transfer in a pulsating flow in the range of the studied geometric and operating parameters. More research is needed to predict heat transfer in a wider range of operating parameters and with other tube bundle configurations.

 

 

 

References in English: 

1. Zdravkovich, M.M. Flow Around Circular Cylinders. Oxford University Press, 1997. 612 p.

2. Zhukauskas, A., Zhyugzhda, I. Teplootdacha tsilindra v poperechnom potoke zhidkosti [Cylinder heat transfer in fluid cross-flow]. Vil'nyus: Izdatel'stvo Mokslas, 1979. 240 p.

3. Zhukauskas, A., Makaryavichyus, V., Shlanchyauskas, A. Teplootdacha puchkov trub v poperechnom potoke zhidkosti [Heat transfer of tube bundles in fluid cross-flow]. Vil'nyus: Izdatel'stvo Mokslas, 1968. 192 р.

4. Zhukauskas, A., Ulinskas, R., Katinas, V. Gidrodinamika i vibratsiya obtekaemykh puchkov trub [Hydrodynamics and vibration of streamlined tube bundles]. Vil'nyus: Izdatel'stvo Mokslas, 1984. 312 p.

5. Dorogi, D., Baranyi, L. Numerical simula-tion of a freely vibrating circular cylinder with different natural frequencies. Ocean Engineering, 2018, vol. 158, pp. 196–207. doi:10.1016/j.oceaneng.2018.03.079

6. Ying-nan, Fu, Xi-zeng, Zhao, Fei-feng, Cao, Da-ke, Zhang, Du, Cheng, Li, Li. Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model. Journal of Hydrodynamics, 2017, vol. 29, no. 1, pp. 96–108. doi:10.1016/s1001-6058(16)60721-7.

7.  Gnatowska, R. Numerical analysis of oscillating flow around a cylinder. Journal of Applied Mathematics and Computational Mechanics, 2014, vol. 13, no. 3, pp. 59–66. doi: 10.17512/jamcm.2014.3.07.

8. Palkin, E.V., Mullyadzhanov,  R.I., Mukhamed, Kh., Kemal, Kh. Upravlenie otryvnym turbulentnym potokom pri pomoshchi vysokochastotnykh vrashchatel'nykh kolebaniy pri Re = 1,4´105 [Control of separation turbulent flows using high-frequency rotary vibrations at Re = 1,4´105]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2016, vol. 327, no. 9, pp. 88–94.

9. Guoneng, Li, Youqu, Zheng, Guilin, Hu, Zhiguo, Zhang, Yousheng, Xu. Experimental Study of the Heat Transfer Enhancement from a Circular Cylinder in Laminar Pulsating Cross-flows. Heat Transfer Engineering, 2016, vol. 37, no. 6, pp. 535–544. doi: 10.1080/01457632.2015. 1060758.

10. Papadakis, G., Bergeles, G. Numerical simulation of the flow and heat transfer around a cylinder with a pulsating approaching flow at a low Reynolds number. Proc Inst Mech Eng., 2001, vol. 215, pp. 105–119. doi: 10.1243/ 0954406011520463

11. Li, G., Zheng, Y., Hu, G., Zhang, Z., Xu, Y. Experimental Study of the Heat Transfer Enhancement from a Circular Cylinder in Laminar Pulsating Cross-flows. Heat Transfer Engineering, 2015, vol. 37, no. 6, pp. 535–544. doi:10.1080/01457632.2015.1060758

12. Liang, C., Papadakis, G. Study of the Effect of Flow Pulsation on the Flow Field and Heat Transfer Over an Inline Cylinder Array Using LES. Engineering Turbulence Modelling and Experiments, 2005, vol. 6, pp. 813–822. doi:10.1016/b978-008044544-1/50078-9.

13. Konstantinidis, E., Balabani, S., Yianneskis, M. Relationship Between Vortex Shedding Lock-On and Heat Transfer. Chemical. Engineering Research and Design, 2003, vol. 81, no. 6, pp. 695–699. doi:10.1205/ 026387603322150543.

14. Popov, I.A., Makhyanov, Kh.M., Gureev, V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena. Intensifikatsiya teploobmena [Basic physics and industrial applications of heat exchange intensification. Heat exchange intensification]. Kazan': Tsentr innovatsionnykh tekhnologiy, 2009. 560 p.

15. Gundappa, M., Diller, T.E. The effects of free stream turbulence and flow pulsation on heat transfer from a cylinder in cross-flow. J. Heat Transfer, 1991, vol. 113, no. 3, pp. 766–769. doi:10.1115/1.2910630.

16. Cheng, C.-H., Hong, J.-L., Aung, W. Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder. International Journal of Heat and Mass Transfer, 1997, vol. 40, no. 8, pp. 1825–1834. doi: 10.1016/s0017-9310(96) 00255-4

17. Park, H.G., Gharib, M. Experimental Study of Heat Convection From Stationary and Oscillating Circular Cylinder in Cross Flow. Journal of Heat Transfer, 2001, vol. 123, no. 51, pp. 51–62. doi:10.1115/1.1338137.

18. Ji, T.H., Kim, S.Y., Hyun, J.M. Experiments on heat transfer enhancement from a heated square cylinder in a pulsating channel flow. International Journal of Heat and Mass Transfer, 2008, vol. 51, no. 5–6, pp. 1130–1138. doi: 10.1016/j.ijheatmasstransfer.2007.04.01.

19. Musaeva, D.A., Sinyavin, A.A., Gur'yanov, A.I. Matematicheskoe modelirovanie protsessov teploobmena pri poperechnom obtekanii tsilindra v usloviyakh nizkochastotnykh nesimmetrichnykh pul'satsiy potoka zhidkosti [Mathematical modelling of heat exchange processes in case of cylinder cross flows in conditions of fluid flow low-frequency asymmetrical pulsations]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki, 2012, no. 7–8, pp. 19–27.

20. Bhalla, N., Dhiman, A.K. Pulsating flow and heat transfer analysis around a heated semi-circular cylinder at low and moderate Reynolds numbers. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, vol. 39, no. 8, pp. 3019–3037. doi:10.1007/s40430-017-0749-1.

21. Haibullina, A.I., Sabitov, L.S., Hayrullin, A.R, lyin, V.K. Energy efficiency of pulsating flows at heat-transfer enhancement in a shell-and-tube water oil cooler. IOP Conference Series: Materials Science and Engineering Ser. «International Scientific-Technical Conference on Innovative Engineering Technologies, Equipment and Materials 2017, ISTC-IETEM 2017», 2018, vol. 412, no. 1, pp. 1–6.

22. lyin, V.K., Sabitov, L.S., Haibullina, A.I., Hayrullin, A.R. External heat transfer in corridor and staggered tube bundles of different configuration under the application of low-frequency pulsations. IOP Conference Series: Materials Science and Engineering Ser. «International Scientific-Technical Conference on Innovative Engineering Technologies, Equipment and Materials 2016, ISTC-IETEM 2016», 2017, vol. 240, no. 1, pp. 1–10.

23. Khaybullina, A.I., Il'in, V.K. Eksperimental'noe issledovanie vneshney teplootdachi pri poperechnom obtekanii korridornogo puchka trub pri Re ≤ 500 s nalozheniem na potok nizkochastotnykh nesimmetrichnykh pul'satsiy [An experimental study of external heat transfer at in-line tube bundle cross-flow at Re ≤ 500 in conditions of low-frequency asymmetrical pulsation superposition on the flow]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki, 2014, no. 1–2, pp. 11–19.

24. Khaybullina, A.I., Khayrullin, A.R., Sinyavin, A.A., Il'in, V.K. Issledovanie teplootdachi v koridornom puchke trub pri nalozhenii na potok protivotochnykh nesimmetrichnykh nizkochastotnykh pul'satsiy [A study of heat transfer in in-line tube bundle in conditions of low-frequency asymmetrical pulsation superposition on the flow]. Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologii, 2013, vol. 12, no. 1, pp. 312–315.

25. Snegirev, A.Yu. Vysokoproizvoditel'nye vychisleniya v tekhnicheskoy fizike. Chislennoe modelirovanie turbulentnykh techeniy [High-performance computing in engineering physics. Numerical simulation of turbulent flows]. Saint-Petersburg: Izdatel'stvo Politekhnicheskiy universitet, 2009. 143 p.

26. Weaver, D.S., Lian, H.Y., Huang, X.Y. Vortex Shedding In Rotated Square Arrays. Journal of Fluids and Structures, 1993, vol. 7, no. 2, pp. 107–121. doi:10.1006/jfls.1993.1009.

27. Weaver, D.S., Fitzpatrick, J.A., Elkashlan, M. Strouhal numbers for heat-exchanger tube arrays in cross flow. Journal of Pressure Vessel Technology, 1987, vol. 109, no. 2, pp. 219–223.

Key words in Russian: 
пульсирующее течение, пульсационное течение, коридорный пучок труб, численное моделирование, интенсификация теплообмена
Key words in English: 
pulsating flow, pulsing flow, in-line tube bundle, numerical simulation, heat transfer enhancement
The DOI index: 
10.17588/2072-2672.2019.4.012-021
Downloads count: 
27