1. Zdravkovich, M.M. Flow Around Circular Cylinders. Oxford University Press, 1997. 612 p.
2. Zhukauskas, A., Zhyugzhda, I. Teplootdacha tsilindra v poperechnom potoke zhidkosti [Cylinder heat transfer in fluid cross-flow]. Vil'nyus: Izdatel'stvo Mokslas, 1979. 240 p.
3. Zhukauskas, A., Makaryavichyus, V., Shlanchyauskas, A. Teplootdacha puchkov trub v poperechnom potoke zhidkosti [Heat transfer of tube bundles in fluid cross-flow]. Vil'nyus: Izdatel'stvo Mokslas, 1968. 192 р.
4. Zhukauskas, A., Ulinskas, R., Katinas, V. Gidrodinamika i vibratsiya obtekaemykh puchkov trub [Hydrodynamics and vibration of streamlined tube bundles]. Vil'nyus: Izdatel'stvo Mokslas, 1984. 312 p.
5. Dorogi, D., Baranyi, L. Numerical simula-tion of a freely vibrating circular cylinder with different natural frequencies. Ocean Engineering, 2018, vol. 158, pp. 196–207. doi:10.1016/j.oceaneng.2018.03.079
6. Ying-nan, Fu, Xi-zeng, Zhao, Fei-feng, Cao, Da-ke, Zhang, Du, Cheng, Li, Li. Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model. Journal of Hydrodynamics, 2017, vol. 29, no. 1, pp. 96–108. doi:10.1016/s1001-6058(16)60721-7.
7. Gnatowska, R. Numerical analysis of oscillating flow around a cylinder. Journal of Applied Mathematics and Computational Mechanics, 2014, vol. 13, no. 3, pp. 59–66. doi: 10.17512/jamcm.2014.3.07.
8. Palkin, E.V., Mullyadzhanov, R.I., Mukhamed, Kh., Kemal, Kh. Upravlenie otryvnym turbulentnym potokom pri pomoshchi vysokochastotnykh vrashchatel'nykh kolebaniy pri Re = 1,4´105 [Control of separation turbulent flows using high-frequency rotary vibrations at Re = 1,4´105]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2016, vol. 327, no. 9, pp. 88–94.
9. Guoneng, Li, Youqu, Zheng, Guilin, Hu, Zhiguo, Zhang, Yousheng, Xu. Experimental Study of the Heat Transfer Enhancement from a Circular Cylinder in Laminar Pulsating Cross-flows. Heat Transfer Engineering, 2016, vol. 37, no. 6, pp. 535–544. doi: 10.1080/01457632.2015. 1060758.
10. Papadakis, G., Bergeles, G. Numerical simulation of the flow and heat transfer around a cylinder with a pulsating approaching flow at a low Reynolds number. Proc Inst Mech Eng., 2001, vol. 215, pp. 105–119. doi: 10.1243/ 0954406011520463
11. Li, G., Zheng, Y., Hu, G., Zhang, Z., Xu, Y. Experimental Study of the Heat Transfer Enhancement from a Circular Cylinder in Laminar Pulsating Cross-flows. Heat Transfer Engineering, 2015, vol. 37, no. 6, pp. 535–544. doi:10.1080/01457632.2015.1060758
12. Liang, C., Papadakis, G. Study of the Effect of Flow Pulsation on the Flow Field and Heat Transfer Over an Inline Cylinder Array Using LES. Engineering Turbulence Modelling and Experiments, 2005, vol. 6, pp. 813–822. doi:10.1016/b978-008044544-1/50078-9.
13. Konstantinidis, E., Balabani, S., Yianneskis, M. Relationship Between Vortex Shedding Lock-On and Heat Transfer. Chemical. Engineering Research and Design, 2003, vol. 81, no. 6, pp. 695–699. doi:10.1205/ 026387603322150543.
14. Popov, I.A., Makhyanov, Kh.M., Gureev, V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena. Intensifikatsiya teploobmena [Basic physics and industrial applications of heat exchange intensification. Heat exchange intensification]. Kazan': Tsentr innovatsionnykh tekhnologiy, 2009. 560 p.
15. Gundappa, M., Diller, T.E. The effects of free stream turbulence and flow pulsation on heat transfer from a cylinder in cross-flow. J. Heat Transfer, 1991, vol. 113, no. 3, pp. 766–769. doi:10.1115/1.2910630.
16. Cheng, C.-H., Hong, J.-L., Aung, W. Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder. International Journal of Heat and Mass Transfer, 1997, vol. 40, no. 8, pp. 1825–1834. doi: 10.1016/s0017-9310(96) 00255-4
17. Park, H.G., Gharib, M. Experimental Study of Heat Convection From Stationary and Oscillating Circular Cylinder in Cross Flow. Journal of Heat Transfer, 2001, vol. 123, no. 51, pp. 51–62. doi:10.1115/1.1338137.
18. Ji, T.H., Kim, S.Y., Hyun, J.M. Experiments on heat transfer enhancement from a heated square cylinder in a pulsating channel flow. International Journal of Heat and Mass Transfer, 2008, vol. 51, no. 5–6, pp. 1130–1138. doi: 10.1016/j.ijheatmasstransfer.2007.04.01.
19. Musaeva, D.A., Sinyavin, A.A., Gur'yanov, A.I. Matematicheskoe modelirovanie protsessov teploobmena pri poperechnom obtekanii tsilindra v usloviyakh nizkochastotnykh nesimmetrichnykh pul'satsiy potoka zhidkosti [Mathematical modelling of heat exchange processes in case of cylinder cross flows in conditions of fluid flow low-frequency asymmetrical pulsations]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki, 2012, no. 7–8, pp. 19–27.
20. Bhalla, N., Dhiman, A.K. Pulsating flow and heat transfer analysis around a heated semi-circular cylinder at low and moderate Reynolds numbers. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, vol. 39, no. 8, pp. 3019–3037. doi:10.1007/s40430-017-0749-1.
21. Haibullina, A.I., Sabitov, L.S., Hayrullin, A.R, lyin, V.K. Energy efficiency of pulsating flows at heat-transfer enhancement in a shell-and-tube water oil cooler. IOP Conference Series: Materials Science and Engineering Ser. «International Scientific-Technical Conference on Innovative Engineering Technologies, Equipment and Materials 2017, ISTC-IETEM 2017», 2018, vol. 412, no. 1, pp. 1–6.
22. lyin, V.K., Sabitov, L.S., Haibullina, A.I., Hayrullin, A.R. External heat transfer in corridor and staggered tube bundles of different configuration under the application of low-frequency pulsations. IOP Conference Series: Materials Science and Engineering Ser. «International Scientific-Technical Conference on Innovative Engineering Technologies, Equipment and Materials 2016, ISTC-IETEM 2016», 2017, vol. 240, no. 1, pp. 1–10.
23. Khaybullina, A.I., Il'in, V.K. Eksperimental'noe issledovanie vneshney teplootdachi pri poperechnom obtekanii korridornogo puchka trub pri Re ≤ 500 s nalozheniem na potok nizkochastotnykh nesimmetrichnykh pul'satsiy [An experimental study of external heat transfer at in-line tube bundle cross-flow at Re ≤ 500 in conditions of low-frequency asymmetrical pulsation superposition on the flow]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki, 2014, no. 1–2, pp. 11–19.
24. Khaybullina, A.I., Khayrullin, A.R., Sinyavin, A.A., Il'in, V.K. Issledovanie teplootdachi v koridornom puchke trub pri nalozhenii na potok protivotochnykh nesimmetrichnykh nizkochastotnykh pul'satsiy [A study of heat transfer in in-line tube bundle in conditions of low-frequency asymmetrical pulsation superposition on the flow]. Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologii, 2013, vol. 12, no. 1, pp. 312–315.
25. Snegirev, A.Yu. Vysokoproizvoditel'nye vychisleniya v tekhnicheskoy fizike. Chislennoe modelirovanie turbulentnykh techeniy [High-performance computing in engineering physics. Numerical simulation of turbulent flows]. Saint-Petersburg: Izdatel'stvo Politekhnicheskiy universitet, 2009. 143 p.
26. Weaver, D.S., Lian, H.Y., Huang, X.Y. Vortex Shedding In Rotated Square Arrays. Journal of Fluids and Structures, 1993, vol. 7, no. 2, pp. 107–121. doi:10.1006/jfls.1993.1009.
27. Weaver, D.S., Fitzpatrick, J.A., Elkashlan, M. Strouhal numbers for heat-exchanger tube arrays in cross flow. Journal of Pressure Vessel Technology, 1987, vol. 109, no. 2, pp. 219–223.