Русская версия English version

Development of a mathematical model of heat-treating furnaces with sole flues and a numerical study of its operation parameters

G.A. Perevezentsev, V.A. Gorbunov, O.B. Kolibaba

Vestnik IGEU, 2019 issue 4, pp. 22—30

Download PDF

Abstract in English: 

Background. The main element of metalworking, engineering and other industries is heating and heat-treating furnaces. An array of workpieces that are loaded into the furnace includes bulk tanks with different parameters. The existing designs of heating furnaces have a number of disadvantages, one of which is the lack of heat carrier filtration in the vertical direction. However, this feature can be found in the developed design of the batch furnace with sole flues. The aim of the work is to develop and study the parameters of a mathematical model of the heating process of a bulk tank in a heat-treating furnace with sole flues.

Materials and methods. The paper describes and studies a mathematical model of a heat-treating furnace equipped with special sole flues. The bulk tank model is built based on a fractal structure, in particular the Menger sponge. To solve the problem of determining the temperature field of the bulk tank, we used a numerical calculation of heat exchange based on the finite-difference method, also called the grid method.

Results. For this purpose, a new design of the batch furnace with hearth chambers has been proposed. As a result of mathematical modeling of the heating process, we have obtained a graph reflecting the temperature field of the bulk tank on the surface and in the heating center. We have also compared the temperature regime of bulk tank heating under normal conditions and in conditions of additional heat carrier filtration through the flues from the hearth chambers to the furnace hearth.

Conclusions. The reliability of the results is confirmed by comparing the numerical simulation results and the results of the physical experiment. The error is not more than 10 %. The efficiency of the heat-treating furnace is improved by additional heat carrier filtration through special channels in the furnace sole. The obtained mathematical model can be used to calculate different heating modes in heat-treating furnaces and to develop technological maps of heating bulk tanks with different porosity values.

References in English: 

1. Poristost' [Porosity]. Malyy entsiklopedicheskiy slovar' Brokgauza i Efrona: v 4 t. [Brockhaus and Efron Shorter Encyclopedic Dictionary: in 4 vol.]. Saint-Petersburg, 1907–1909.

2. Pugovkin, A.U., Krylova, O.B., Stanovoy, V.I., Buylov, A.A. Opredelenie effektivnykh teplofizicheskikh svoystv nasypnykh sadok. Metallurgicheskie pechi [Determining of effective thermophysical properties of bulk tanks. Metallurgical furnaces]. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 1987, no. 10, pp. 105–107.

3. Volkov, D.P., Dul'nev, G.N. Teplo- i massoperenos v neftenosnykh gruntakh [Heat and mass transfer in oil-bearing soils]. Inzhenerno-fizicheskiy zhurnal, 1986, vol. 50, no. 6, pp. 939–946.

4. Leont'ev, N.E. Osnovy teorii fil'tratsii [Basics of filtration theory]. Moscow: Izdatel'stvo TsPI pri mekhaniko-matematicheskom fakul'tete MGU, 2009, pp. 24–29.

5. Rudykh, O.L. Raschet teplo- i massoperenosa v poristykh telakh metodom konechnykh elementov [Calculation of heat and mass transfer in porous bodies by the finite element method]. Inzhenerno-fizicheskiy zhurnal, vol. 42, no. 6, pp. 1026–1029.

6. Rebinder, P.A., Shchukin, E.D., Margolis, L.Ya. O mekhanicheskoy prochnosti poristykh dispersnykh tel [On mechanical strength of porous dispersed bodies]. DAN, 1964, vol. 154, no. 3, pp. 695–698.

7. Gusenkova, N.P., Krylova, L.S., Korotin, A.N. Chislennoe issledovanie protsessa teploobmena v poristom tele pri fil'tratsii teplonositelya [A numerical study of heat exchange in a porous body in heat carrier filtration conditions]. Sbornik nauchnykh trudov Gosudarstvennoy metallurgicheskoy akademii Ukrainy (Energetika. Metallurgiya) v 2 t., t. 2 [Collected scientific works of the State Metallurgical Academy of Ukraine (Power Engineering. Metallurgy) in 2 vol., vol. 2]. Dnepropetrovsk: GmetAU, 1999, pp. 154–157.

8. Pelevin, F.V., Ponomarev, A.V. Effektivnost' teploobmena v poristykh setchatykh metallakh pri dvumernom dvizhenii teplonositelya [Heat exchange efficiency in porous cellular metals in conditions of two-dimensional motion of the heat carrier]. Teplovye protsessy v tekhnike, 2014, no. 1.

9. Fedoseev, S.V., Gorbunov, V.A. Ispol'zovanie fraktal'noy geometrii pri sozdanii modeley ustanovki fil'tratsii TBO v pakete Ansys [The use of fractal geometry in creating models of the household waste filtration unit in the Ansys package]. Vestnik IGEU, 2015, issue 7.

10. Brovkin, L.A., Gusev, V.A. O kraevykh usloviyakh v protsessakh sushki fil'tratsiey teplonositelya [On edge conditions in drying processes with heat carrier filtration]. Izvestiya vuzov. Energetika, 1983, no. 5, pp. 79–82.

11. Gorbunov, V.A., Kolibaba, O.B., Perevezentsev, G.A., Suleymanov, M.G. Prokhodnaya termicheskaya plamennaya pech' [The through flame heat treating furnace]. Patent RF, no. 139405, 2014.

12. Perevezentsev, G.A., Gorbunov, V.A., Kolibaba, O.B. Metod fraktal'nogo modelirovaniya nasypnoy sadki pri ee nagreve v termicheskoy pechi [Method of fractal modelling of the bulk tank heated in a heat-treating furnace]. Byulleten' nauchno-tekhnicheskoy i ekonomicheskoy informatsii «Chernaya metallurgiya», 2017, no. 1, pp. 84–87.

 

Key words in Russian: 
математическая модель, термическая печь, теплообмен в пористых телах, эффективная теплопроводность, подовый канал, насыпная садка, фильтрация теплоносителя, фрактал, порозность
Key words in English: 
mathematical model, heat-treating furnace, heat exchange in porous bodies, effective heat conductivity, sole flue, bulk tank, heat carrier filtration, fractal, porosity
The DOI index: 
10.17588/2072-2672.2019.4.022-030
Downloads count: 
18