Русская версия English version

Study of parameters of production of granular fuel from peat

I.I. Golovanova, A.P. Terekhin, P.A. Maryandyshev

Vestnik IGEU, 2024 issue 1, pp. 35—43

Download PDF

Abstract in English: 

Background. Granulation technology is becoming an increasingly attractive one for the energy use of biomass. The problem to find a suitable method of compaction of various types of biomasses has existed for decades. The purpose of this study is to select the optimal mode to produce pellets from peat fuel.

Materials and methods. Peat samples collected in the Mezen district of the Arkhangelsk region have been selected as the data for study. Elemental analysis of the studied samples of peat and peat pellets has been carried out using X-ray fluorescence spectroscopy on an EDX-8000 spectrometer. Experiments on peat granulation have been carried out in a press granulator of the German company Amandus Kahl.

Results. The authors describe the procedure of selection of the operating mode of a press granulator to produce pellets from peat fuel. Optimal regime of pellets production has been selected corresponding to the national standard. An elemental analysis of the studied samples of peat and peat pellets has been carried out using X-ray fluorescence spectroscopy. The results have shown that the ash content of peat fuel from the Arkhangelsk region is no more than 2 %.

Conclusion. Production of environmentally friendly high-calorific pellets from peat corresponding to the National Russian standards allows increasing the energy potential of the Arkhangelsk region. When converting peat into the pellets, the content of carbon, nitrogen, and hydrogen (C+N+H) increases, and the content of sulfur and oxygen (O+S) decreases, which leads to the increase of the heat of fuel combustion. Advantages of the use of peat to produce energy are low sulfur content, low ash content and high softening ash temperature.

References in English: 

1. Sajid, J., Sajid, M.B., Ahmad, M.M., Kamran, M., Ayub, R., Ahmed, N., Mahmood, M., Abbas, A. Energetic, economic, and greenhouse gas emissions assessment of biomass and solar photovoltaic systems for an industrial facility. Energy Reports, 2022, vol. 8, pp. 12503–12521.

2. Hu, Y., Christensen, E., Restuccia, F., Rein, G. (2019). Transient gas and particle emissions from smouldering combustion of peat. Proceedings of the Combustion Institute, 2019, vol. 37, pp. 4035–4042.

3. Lyubov, V.K., Lyubova, S.V. Povyshenie effektivnosti energeticheskogo ispol'zovaniya biotopliv [Improving the efficiency of energy use of biofuels]. Arkhangel'sk: SAFU, 2017. 533 p.

4. Agar, D.A., Rudolfsson, M., Lavergne, S., Melkior, T., da Silva Perez, D., Dupont, C., Campargue, M., Kalén, G., Larsson, S.H. Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing. Renewable Energy, 2021, vol. 178, pp. 766–774.

5. Anukam, A., Berghel, J., Henrikson, G., Frodeson, S., Ståhl, M. A review of the mechanism of bonding in densified biomass pellets. Renewable and Sustainable Energy Reviews, 2021, vol. 148, p. 111249.

6. Gajera, B., Tyagi, U., Sarma, A.K., Jha, M.K. Impact of torrefaction on thermal behavior of wheat straw and groundnut stalk biomass: Kinetic and thermodynamic study. Fuel Communications, 2022, vol. 12, p. 100073.

7. Tabakaev, R., Ibraeva, K., Yazykov, N., Shanenkov, I., Dubinin, Y., Zavorin, A. The study of highly mineralized peat sedimentation products in terms of their use as an energy source. Fuel, 2020, vol. 271, p. 117593.

8. Fan, Y. van, Romanenko, S., Gai, L., Kupressova, E., Varbanov, P.S., Klemeš, J.J. Biomass integration for energy recovery and efficient use of resources: Tomsk Region. Energy, 2021, vol. 235, p. 121378.

9. Ibraeva, K.T., Manaev, Yu.O., Tabakaev, R.B., Yazykov, N.A., Zavorin, A.S. Issledovanie kharakteristik i mineral'nogo sostava torfa Tomskoy oblasti primenitel'no k energeticheskomu ispol'zovaniyu [Investigation of the characteristics and mineral composition of peat of the Tomsk region in relation to energy use]. Izvestiya TPU, 2019, vol. 330, no. 1, pp. 191–200.

10. Chukhareva, N., Korotchenko, T., Rozhkova, D. Impact of Heat Treatment on the Structure and Properties of Tomsk Region Peat. Procedia Chemistry, 2014, vol. 10, pp. 535–540.

11. Krumins, J., Klavins, M., Kalnina, L. Fen peat in environmentally friendly technologies. Energy Procedia, 2018, vol. 147, pp. 114–120.

12. Yuan, H., Purnomo, D.M.J., Sun, P., Huang, X., Rein, G. Computational study of the multidimensional spread of smouldering combustion at different peat conditions. Fuel, 2023, vol. 345, p. 128064. https://doi.org/https://doi.org/10.1016/j.fuel.2023.128064

13. Royo, J., Canalís, P., Quintana, D. Chemical study of bottom ash sintering in combustion of pelletized residual agricultural biomass. Fuel, 2022, vol. 310, p. 122145.

14. Moradian, F., Tchoffor, P.A., Davidsson, K.O., Pettersson, A., Backman, R. Thermodynamic equilibrium prediction of bed agglomeration tendency in dual fluidized-bed gasification of forest residues. Fuel Processing Technology, 2016, vol. 154, pp. 82–90.

15. Nisamaneenate, J., Atong, D., Seemen, A., Sricharoenchaikul, V. Mitigating bed agglomeration in a fluidized bed gasifier operating on rice straw. Energy Reports, 2020, vol. 6, pp. 275–285.

16. Capela, M.N., Tobaldi, D.M., Seabra, M.P., Tarelho, L.A.C., Labrincha, J.A. Characterization of ashes produced from different biomass fuels used in combustion systems in a pulp and paper industry towards its recycling. Biomass and Bioenergy, 2022, vol. 166, p. 106598.

17. Nascimento, R.F., Ávila, M.F., Taranto, O.P., Kurozawa, L.E. Agglomeration in fluidized bed: Bibliometric analysis, a review, and future perspectives. Powder Technology, 2022, vol. 406, p. 117597.

18. Orumbayev, R.K., Bakhtiyar, B.T., Umyshev, D.R., Kumargazina, M.B., Otynchiyeva, M.T., Akimbek, G.A. Experimental study of ash wear of heat exchange surfaces of the boiler. Energy, 2021, vol. 215, p. 119119. https://doi.org/https://doi.org/10.1016/j.energy.2020.119119

19. Pronobis, M., Wojnar, W. The impact of biomass co-combustion on the erosion of boiler convection surfaces. Energy Conversion and Management, 2013, vol. 74, pp. 462–470. https://doi.org/https://doi.org/ 10.1016/j.enconman.2013.06.059

20. Kaliyan, N., Morey, R.V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 2010, vol. 101(3), pp. 1082–1090. https://doi.org/https://doi.org/10.1016/j.biortech.2009.08.064

21. Antonov, M., Veinthal, R., Huttunen-Saarivirta, E., Hussainova, I., Vallikivi, A., Lelis, M., Priss, J. Effect of oxidation on erosive wear behaviour of boiler steels. Tribology International, 2013, vol. 68, pp. 35–44. https://doi.org/https://doi.org/10.1016/j.triboint.2012.09.011

22. Antonov, M., Hussainova, I., Kübarsepp, J., Traksmaa, R. Oxidation-abrasion of TiC-based cermets in SiC medium. Wear, 2011, vol. 273(1), pp. 23–31. https://doi.org/https://doi.org/10.1016/j.wear.2011.05.005

23. Morris, J.D., Daood, S.S., Nimmo, W. The use of kaolin and dolomite bed additives as an agglomeration mitigation method for wheat straw and miscanthus biomass fuels in a pilot-scale fluidized bed combustor. Renewable Energy, 2022, vol. 196, pp. 749–762.

Key words in Russian: 
торфяное топливо, торфяные пеллеты, гранулирование, плоская матрица, рентгенофлуоресцентный анализ
Key words in English: 
peat fuel, peat pellets, granulation, flat matrix, X-ray fluorescence analysis
The DOI index: 
10.17588/2072-2672.2024.1.035-043
Downloads count: 
18