1. Sajid, J., Sajid, M.B., Ahmad, M.M., Kamran, M., Ayub, R., Ahmed, N., Mahmood, M., Abbas, A. Energetic, economic, and greenhouse gas emissions assessment of biomass and solar photovoltaic systems for an industrial facility. Energy Reports, 2022, vol. 8, pp. 12503–12521.
2. Hu, Y., Christensen, E., Restuccia, F., Rein, G. (2019). Transient gas and particle emissions from smouldering combustion of peat. Proceedings of the Combustion Institute, 2019, vol. 37, pp. 4035–4042.
3. Lyubov, V.K., Lyubova, S.V. Povyshenie effektivnosti energeticheskogo ispol'zovaniya biotopliv [Improving the efficiency of energy use of biofuels]. Arkhangel'sk: SAFU, 2017. 533 p.
4. Agar, D.A., Rudolfsson, M., Lavergne, S., Melkior, T., da Silva Perez, D., Dupont, C., Campargue, M., Kalén, G., Larsson, S.H. Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing. Renewable Energy, 2021, vol. 178, pp. 766–774.
5. Anukam, A., Berghel, J., Henrikson, G., Frodeson, S., Ståhl, M. A review of the mechanism of bonding in densified biomass pellets. Renewable and Sustainable Energy Reviews, 2021, vol. 148, p. 111249.
6. Gajera, B., Tyagi, U., Sarma, A.K., Jha, M.K. Impact of torrefaction on thermal behavior of wheat straw and groundnut stalk biomass: Kinetic and thermodynamic study. Fuel Communications, 2022, vol. 12, p. 100073.
7. Tabakaev, R., Ibraeva, K., Yazykov, N., Shanenkov, I., Dubinin, Y., Zavorin, A. The study of highly mineralized peat sedimentation products in terms of their use as an energy source. Fuel, 2020, vol. 271, p. 117593.
8. Fan, Y. van, Romanenko, S., Gai, L., Kupressova, E., Varbanov, P.S., Klemeš, J.J. Biomass integration for energy recovery and efficient use of resources: Tomsk Region. Energy, 2021, vol. 235, p. 121378.
9. Ibraeva, K.T., Manaev, Yu.O., Tabakaev, R.B., Yazykov, N.A., Zavorin, A.S. Issledovanie kharakteristik i mineral'nogo sostava torfa Tomskoy oblasti primenitel'no k energeticheskomu ispol'zovaniyu [Investigation of the characteristics and mineral composition of peat of the Tomsk region in relation to energy use]. Izvestiya TPU, 2019, vol. 330, no. 1, pp. 191–200.
10. Chukhareva, N., Korotchenko, T., Rozhkova, D. Impact of Heat Treatment on the Structure and Properties of Tomsk Region Peat. Procedia Chemistry, 2014, vol. 10, pp. 535–540.
11. Krumins, J., Klavins, M., Kalnina, L. Fen peat in environmentally friendly technologies. Energy Procedia, 2018, vol. 147, pp. 114–120.
12. Yuan, H., Purnomo, D.M.J., Sun, P., Huang, X., Rein, G. Computational study of the multidimensional spread of smouldering combustion at different peat conditions. Fuel, 2023, vol. 345, p. 128064. https://doi.org/https://doi.org/10.1016/j.fuel.2023.128064
13. Royo, J., Canalís, P., Quintana, D. Chemical study of bottom ash sintering in combustion of pelletized residual agricultural biomass. Fuel, 2022, vol. 310, p. 122145.
14. Moradian, F., Tchoffor, P.A., Davidsson, K.O., Pettersson, A., Backman, R. Thermodynamic equilibrium prediction of bed agglomeration tendency in dual fluidized-bed gasification of forest residues. Fuel Processing Technology, 2016, vol. 154, pp. 82–90.
15. Nisamaneenate, J., Atong, D., Seemen, A., Sricharoenchaikul, V. Mitigating bed agglomeration in a fluidized bed gasifier operating on rice straw. Energy Reports, 2020, vol. 6, pp. 275–285.
16. Capela, M.N., Tobaldi, D.M., Seabra, M.P., Tarelho, L.A.C., Labrincha, J.A. Characterization of ashes produced from different biomass fuels used in combustion systems in a pulp and paper industry towards its recycling. Biomass and Bioenergy, 2022, vol. 166, p. 106598.
17. Nascimento, R.F., Ávila, M.F., Taranto, O.P., Kurozawa, L.E. Agglomeration in fluidized bed: Bibliometric analysis, a review, and future perspectives. Powder Technology, 2022, vol. 406, p. 117597.
18. Orumbayev, R.K., Bakhtiyar, B.T., Umyshev, D.R., Kumargazina, M.B., Otynchiyeva, M.T., Akimbek, G.A. Experimental study of ash wear of heat exchange surfaces of the boiler. Energy, 2021, vol. 215, p. 119119. https://doi.org/https://doi.org/10.1016/j.energy.2020.119119
19. Pronobis, M., Wojnar, W. The impact of biomass co-combustion on the erosion of boiler convection surfaces. Energy Conversion and Management, 2013, vol. 74, pp. 462–470. https://doi.org/https://doi.org/ 10.1016/j.enconman.2013.06.059
20. Kaliyan, N., Morey, R.V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 2010, vol. 101(3), pp. 1082–1090. https://doi.org/https://doi.org/10.1016/j.biortech.2009.08.064
21. Antonov, M., Veinthal, R., Huttunen-Saarivirta, E., Hussainova, I., Vallikivi, A., Lelis, M., Priss, J. Effect of oxidation on erosive wear behaviour of boiler steels. Tribology International, 2013, vol. 68, pp. 35–44. https://doi.org/https://doi.org/10.1016/j.triboint.2012.09.011
22. Antonov, M., Hussainova, I., Kübarsepp, J., Traksmaa, R. Oxidation-abrasion of TiC-based cermets in SiC medium. Wear, 2011, vol. 273(1), pp. 23–31. https://doi.org/https://doi.org/10.1016/j.wear.2011.05.005
23. Morris, J.D., Daood, S.S., Nimmo, W. The use of kaolin and dolomite bed additives as an agglomeration mitigation method for wheat straw and miscanthus biomass fuels in a pilot-scale fluidized bed combustor. Renewable Energy, 2022, vol. 196, pp. 749–762.