Русская версия English version

Assessment of feasibility of using COMSOL software for modeling thermalhydraulic processes in WWER reactors

V.A. Gorbynov, D.O. Fomichev, A.R. Masev, E.V. Kraynov

Vestnik IGEU, 2024 issue 2, pp. 15—23

Download PDF

Abstract in English: 

Background. Thermophysical modeling software packages are widely used for modeling various thermohydraulic processes including modeling nuclear reactor fuel element. Verification of such calculations is possible only if we compare the results obtained in different packages (cross-verification) due to the extreme complexity or impossibility to carry out analytical calculations or experiments. It seems relevant to carry out cross-verification of calculations of WWER reactor fuel elements in COMSOL Multiphysics software package using another popular ANSYS software package.

Materials and methods. Models of fuel elements for the analysis of thermohydraulic processes are developed using thermophysical modeling packages ANSYS Fluent and COMSOL Multiphysics for cross-verification of calculation results in the latter. Modeling of temperature fields is carried out based on the heat conduction equation with an internal heat source. The authors have considered several formulations of problems: with fuel element cladding and without it and the central hole in the fuel.

Results. Models of fuel elements of the WWER-1000 reactor have been designed for three formulations of problems with different designs in ANSYS Fluent and COMSOL Multiphysics software packages. Temperature fields have been determined using the finite element method. The results of the calculations of the fuel core maximum temperature are presented and compared for two software packages. The maximum relative deviation of the temperatures obtained is 0,97 %.

Conclusions. A comparison of the temperature calculations results obtained using models developed in two packages shows that the relative deviation of the values corresponds to the error of the measuring instruments. It confirms that COMSOL Multiphysics can be successfully used to simulate processes in WWER reactors along with ANSYS Fluent.

References in English: 

1. Horvath, A., Rachlew, E. Nuclear power in the 21st century: Challenges and possibilities. Ambio, 2016, vol. 45, pp. 38–49. DOI: 10.1007/s13280-015-0732-y.

2. Ramana, M.V. Small Modular and Advanced Nuclear Reactors: A Reality Check. IEEE Access, 2021, vol. 9, pp. 42090–42099. DOI: 10.1109/ACCESS.2021.3064948.

3. Gorbunov, V.A., Ivanova, N.B., Lonshakov, N.A., Belov, Ya.V. Razrabotka modeli po opredeleniyu temperaturnogo polya tvela v dvumernoy postanovke zadachi [Development of model for determination of temperature fields of fuel elements in two-dimensional formulation of the problem]. Izvestiya vuzov. Yadernaya energetika, 2019, no. 2, pp. 174–184.

4. Starkov, V.A., Marikhin, N.Yu. Metodika i programma rascheta statsionarnogo temperaturnogo polya v sisteme mnogozonnykh tsilindricheskikh TVELov [Method and program of calculation of stationary temperature field in the system of multizone cylindrical fuel elements]. Izvestiya vuzov. Yadernaya energetika, 2013, no. 1, pp. 54–62.

5. Gorbunov, V.A., Andrianov, S.G., Konoval'tseva, S.S. Otsenka vliyaniya radiatsionnogo teploobmena na parametry temperaturnykh poley tvelov razlichnogo konstruktivnogo ispolneniya [Assessment of radiation heat transfer influence on parameters of temperature fields of various design fuel rods]. Vestnik IGEU, 2021, issue 2, pp. 23–31.

6. Gorbunov, V.A., Teplyakova, S.S., Lonshakov, N.A., Andrianov, S.G., Mineev, P.A. Issledovanie vliyaniya konstruktivnogo parametra teplovydelyayushchego elementa na koeffitsient neravnomernosti teplovogo vydeleniya po vysote reaktora VVER-1000 [Investigation of the influence of the fuel element design parameter in the VVER-1000 reactor axial power peaking factor]. Izvestiya vuzov. Yadernaya energetika, 2023, no. 2, pp. 27–40.

7. Heat Transfer Module User’s Guide, Version COMSOL 3.5, 2008. 296 p. Available at: https://extras.csc.fi/math/comsol/3.5/doc/ht/htug.pdf

8. Bruyaka, V.A. Inzhenernyy analiz v ANSYS Workbench [Engineering Analysis in ANSYS Workbench]. Samara: Samarskiy gosudarstvennyy tekhnicheskiy universitet, 2010. 271 p.

9. Dmitriev, S.M., Zverev, D.L., Bykh, O.A., Panov, Yu.K., Sorokin, N.M., Farafonov, V.A. Osnovnoe oborudovanie AES s korpusnymi reaktorami na teplovykh neytronakh [Basic equipment of nuclear power plants with pressure vessel reactors on thermal neutrons]. Moscow: Mashinostroenie, 2013. 415 p.

10. Dement'ev, B.A. Yadernye energeticheskie reaktory [Nuclear power reactors]. Moscow: Energoatomizdat, 1990. 352 p.

11. Gorbunov, V.A. Teplogidravlicheskie protsessy v yadernykh reaktorakh [Thermohydraulic processes in nuclear reactors]. Ivanovo, 2018. 183 p.

12. Chirkin, V.S. Teplofizicheskie svoystva materialov yadernoy tekhniki [Thermophysical properties of nuclear technology materials]. Moscow: Atomizdat, 1968. 484 p.

13. Kolpakov, G.N., Selivanikova, O.V. Konstruktsiya tvelov, kanalov i aktivnykh zon energeticheskikh reaktorov [Designs of fuel elements, channels and cores of power reactors]. Tomsk: Izdatel'stvo Tomskogo politekhnicheskogo universiteta, 2009. 118 p.

14. Vargaftik, N.B. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey [Handbook of Thermophysical Properties of Gases and Liquids]. Moscow: Nauka, 1972. 720 p.

15. Zaymovskiy, A.S., Nikulina, A.V., Reshetnikov, N.G. Tsirkonievye splavy v atomnoy energetike [Zirconium alloys in nuclear energy]. Moscow: Energoizdat, 1981. 232 p.

16. Adamov, E.O., Andreev, P.V., Antipov, S.A., Arzhaev, A.I. Mashinostroenie yadernoy tekhniki. T. IV-25. Кн. 2 [Mechanical engineering of nuclear technology. Vol. IV-25, book 2]. Moscow: Mashinostroenie, 2005. 944 p.

Key words in Russian: 
твэл, температурное поле твэла, кросс-верификация, численное моделирование, программные пакеты теплофизического моделирования, метод конечных элементов
Key words in English: 
fuel element, fuel element temperature field, cross-verification, numerical simulation, thermophysical modeling software packages, finite element method
The DOI index: 
10.17588/2072-2672.2024.2.015-023
Downloads count: 
31