Русская версия English version

Study of the characteristics of combined flue gas deep cooling devices on hot water boilers of housing and communal services system

A.B. Biryukov, A.N. Lebedev, K.D. Kaminsky

Vestnik IGEU, 2024 issue 5, pp. 31—41

Download PDF

Abstract in English: 

Background. One of the ways to increase the efficiency of hot water boilers of the housing and communal services system is the deep cooling of combustion products to temperatures below the dew point temperature. Currently, there are a number of studies on the use of condensation economizers and air heaters of various types to solve this problem. The use of such devices makes it possible to reduce the temperature of combustion products and, thus, increase the heat utilization coefficient, reduce fuel consumption. The use of combined flue gas cooling devices seems particularly promising, but the parameters of their operation have not yet been studied. In this regard, the development and study of the parameters of such devices are relevant.

Materials and methods. Using the techniques to design heat exchangers, a set of thermal calculations has been performed to study the characteristics of a combined deep cooling system for combustion products after a hot water boiler of the housing and communal services system, represented by an air heater and a condensation economizer. It is considered that one part of the flue gases after the air heater is sent to the economizer, and the other part goes through the bypass, bypassing the economizer, and then meets the combustion products coming out of it. The distribution of the combustion product flow before the economizer is based on the need to ensure the temperature of the mixed flow after the economizer at 70 °C.

Results. For the most common hot water boiler in the housing and communal services system of the TVG-8M type, the authors have been established the dependence of the heat transfer coefficients, the surface area of the heat exchangers and other parameters of the deep cooling system of the exhaust gases on the set value of the temperature of the combustion products after the air heater.

Conclusions. It has been established that the proposed scheme of a combined deep cooling system for combustion products makes it possible to improve the technical and economic performance of the boiler by reducing fuel consumption. It is proved that the smoke temperature after the air heater for this type of the boiler should not be very low (not lower than 115–130 °C), since it dramatically increases the heat flow with a decrease in the average logarithmic temperature difference and leads to an increase not only in the temperature of the heated air, but also in the surface area of the air heater.

References in English: 

1. Mustyatse, V.T., Butenko, N.A., Varenik, A.M. Issledovanie temperaturnogo polya i tekhnicheskogo sostoyaniya dymovoy truby na TETs-1 g. Kishineva [Study of temperature field and technical condition of the chimney at TPP-1 Chișinău-city]. Materialy Mezhdunarodnoy konferentsii «Energiya Moldovy». Regional'nye aspekty razvitiya [Proceedings of the International conference “Energy of Moldova”. Regional issues of development]. Chizinau, Respublika Moldova, 2012.

2. Kudinov, A.A., Ziganshina, S.K. Energosberezhenie v teploenergetike i teplotekhnologiyakh [Energy saving in heat power engineering and heat technologies]. Moscow: Маshinostroenie, 2011. 374 p.

3. Aronov, I.Z. Kontaktnyy nagrev vody produktami sgoraniya prirodnogo gaza [Contact heating of water using natural gas combustion products]. Leningrad: Nedra, 1990. 280 p.

4. Biryukov, A.B., Lebedev, A.N., Kaminskiy, K.D. Metodika opredeleniya temperatury tochki rosy produktov sgoraniya prirodnogo gaza [Methodology for determining the dew point temperature of natural gas combustion products]. Vestnik IGEU, 2023, issue 6, pp. 43–49.

5. Kudinov, A.A. Energosberezhenie v teplogeneriruyushchikh ustanovkakh [Energy saving in heat generating plants]. Ul'yanovsk: UlGTU, 2000. 139 p.

6. Efimov, A.V., Goncharenko, A.L., Goncharenko, L.V., Esipenko, T.A. Sovremennye tekhnologii glubokogo okhlazhdeniya produktov sgoraniya topliva v kotel'nykh ustanovkakh, ikh problemy i puti resheniya [Modern technologies of deep cooling of fuel combustion products in boiler plants, their problems and solutions]. Khar'kov: NTU «KhPI», 2017. 233 p.

7. Bespalov, V.V., Bespalov, V.I. Tekhnologiya osusheniya dymovykh gazov TETs s ispol'zovaniem teploty kondensatsii vodyanykh parov [The technology of dehumidification of flue gases of a CHP plant using the heat of condensation of water vapor]. Izvestiya Tomskogo politekhnicheskogo universiteta, 2010, vol. 316, no. 4, pp. 56–59.

8. Elsukov, V.K. Otsenka effektivnosti tekhnologiy utilizatsii energii ukhodyashchikh gazov kotlov, vklyuchayushchey teplotu kondensatsii vodyanykh parov [Evaluation of the efficiency of technologies for the utilization of energy from exhaust gases of boilers, including the heat of condensation of water vapor]. Sistemy. Metody. Tekhnologii, 2014, no. 1(2), pp. 83–85.

9. Volodin, V.I., Karlovich, T.B. Primery teplovogo rascheta konvektivnykh poverkhnostey nagreva parovogo kotla i kondensatora paroturbinnoy ustanovki [Examples of thermal calculation of convective heating surfaces of a steam boiler and a condenser of a steam turbine installation]. Minsk: BGTU, 2023. 74 p.

10. Mikheev, M.A., Mikheeva, I.M. Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow: Energiya, 1977. 345 p.

11. Efimov, A.V., Goncharenko, A.L., Goncharenko, L.V. Razrabotka plastinchatogo vozdukhopodogrevatelya kondensatsionnogo tipa dlya teploutilizatsionnoy sistemy [Development of a condensation type plate air heater for a heat recovery system]. ENERGETIKA: ekonomіka, tekhnologії, ekologіya, 2012, no. 2(31), pp. 83–90.

12. Biryukov, A.B., Lebedev, A.N., Kaminskiy, K.D. Ispol'zovanie kombinirovannykh ustroystv glubokogo okhlazhdeniya dymovykh gazov na vodogreynykh kotlakh sistemy ZhKKh [The use of combined deep flue gas cooling devices on hot water boilers of the housing and communal services system]. Vestnik Donetskogo natsional'nogo universiteta. Seriya G: Tekhnicheskie nauki, 2024, no. 1, pp. 69–81.

13. Kazantsev, E.I. Promyshlennyye pechi [Industrial furnaces]. Moscow: Metallurgiya, 1975. 368 p.

14. Isachenko, V.P., Osipova, V.A., Sukomel, A.S. Teploperedacha [Heat transfer]. Moscow: Energiya, 1975. 488 p.

Key words in Russian: 
водогрейный котел, воздухоподогреватель, теплоутилизатор, конденсационный экономайзер, температура точки росы, коэффициент теплоотдачи, коэффициент теплопередачи, средняя разность температур
Key words in English: 
hot water boiler, air heater, heat exchanger, condensation economizer, dew point temperature, heat transfer and heat transfer coefficients, average temperature difference
The DOI index: 
10.17588/2072-2672.2024.5.031-041
Downloads count: 
13