Русская версия English version

Heat transfer during water movement in a pipe at temperatures close to boiling points in the transient mode

G.R. Badretdinova, A.V. Dmitriev

Vestnik IGEU, 2024 issue 5, pp. 42—51

Download PDF

Abstract in English: 

Background. Currently, there is a problem of developing effective methods to calculate heat and mass transfer processes during steam condensation from a vapor-gas mixture in industrial devices. This is due to the need to create new reliable and highly efficient designs of heat exchangers for various purposes.

Materials and methods. The finite element method has been used in the ANSYS Fluent software package during the numerical simulation. An experimental plant is tested in the pipeline of an industrial enterprise at the production site of the Technopolis KHIMGRAD industrial park (Kazan-city).

Results. The applicability of the Lee model to solve problems of water flow in a pipeline with partial evaporation is proved. This model allows you to accurately account for the processes of evaporation and condensation, which is important for the design of cooling and air conditioning systems. The authors have designed a three-dimensional model of the flow area of the experimental module and a CFD model to calculate temperatures, phase velocities and their concentrations, considering the peculiarities of the ongoing processes of heat and mass transfer. A slight effect on the heat flow of a 180° rotation during the flow of a liquid medium in the range of the Reynolds numbers 1800–2600 is shown. The developed model is verified with the results obtained at the experimental plant. It is established that the model reproduces experimental data well. An analysis of studies of heat and mass transfer processes during the fluid flow in channels in the presence of phase transitions is carried out. The problems of calculating the parameters of heat transfer during the movement of a fluid in a transient mode are revealed, especially at values of the Reynolds number close to 2000. The experimental plant diagram is presented. It is found that in the range of Reynolds numbers of 2600–3600, the calculated temperature values differ from the temperature values obtained experimentally by less than 0,42 %. During the partial transition of water into steam in the range of Reynolds numbers of 1800–2600, the deviations were less than 6 %, which confirms the adequacy of numerical modeling of calculating the heat transfer process in a pipe.

Conclusions. It is shown that considering the influence of temperature on surface tension, the coefficient of thermal conductivity of water and the coefficient of dynamic viscosity of water is important to obtain accurate results. The proposed approach can be used to optimize the operating parameters of condensers and evaporators, as well as to accurately calculate the heat transfer coefficient and determine the areas of vapor formation. It will improve the energy efficiency of industrial installations and reduce the cost of equipment operation.

References in English: 

1. Aksenov, B.G., Stepanov, O.A., Rydalina, N.V. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika, 2020, vol. 6, no. 2(22), pp. 22–40. DOI: 10.21684/2411-7978-2020-6-2-22-40.

2. Drabkina, E.V., Nikulin, V.D. Analiz vozmozhnostey primeneniya kondensatsionnykh ekonomayzerov v kachestve energosberegayushchikh ustroystv [Analysis of the possibilities of using condensation economizers as energy-saving devices]. Sbornik nauchnykh statey X Mezhdunarodnoy nauchnoy konferentsii «Prioritetnye napravleniya innovatsionnoy deyatel'nosti v promyshlennosti», Kazan', 30–31 oktyabrya 2020 goda [Proceedings of scientific papers of X International scientific conference “Priority areas of innovation activities in industry”, Kazan, October 30–31, 2020]. Kazan', 2020, pp. 87–93.

3. Martinchuk, Yu.Yu. Kondensatsionnye ekonomayzery [Condensation Economizers]. Materialy studencheskoy nauchno-tekhnicheskoy konferentsii «Aktual'nye problemy energetiki 2020» [Materials of the student scientific and technical conference “Actual problems of energy 2020”]. Minsk: BNTU, 2020, pp. 789–791.

4. Kunitskii, V.A. Vestnik vologodskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki, 2020, no. 1, pp. 19–22.

5. Strukov, A.R., L'vovich, E.M. Problemy ekonomii teplovoy energii [Problems of saving thermal energy]. Resursosberezhenie i ekologiya stroitel'nykh materialov, izdeliy i konstruktsiy, 2022, pp. 277–279.

6. Mokhtar, Z., Berghe, J.V., Blondeau, J. Case Studies in Therm. Eng., 2023, p. 103770. https://doi.org/10.1016/j.csite.2023.103770

7. Wilberforce, T., Muhammad, I. Int. J. of Thermofluids, 2023, vol. 17, p. 100280. https://doi.org/10.1016/j.ijft.2023.100280

8. Rogowski, M., Andrzejczyk, R. Int. Com. in Heat and Mass Transf., 2023, vol. 144, p. 106795. https://doi.org/10.1016/j.icheatmasstransfer.2023.106795

9. Gong, Q., Yu, C., Wang, W., Wang, Y. Case Stud. in Therm. Eng., 2023, vol. 51, p. 103483. https://doi.org/10.1016/j.csite.2023.103483

10. Tian, G., Tian, C., Alizadeh, A.A., Shirani, N., Nasajpour-Esfahani, N., Shamsborhan, M., Baghaei, S. Alexandria Eng. J., 2023, vol. 82, p. 541–556. https://doi.org/10.1016/j.aej.2023.10.019

11. Nilpueng, K., Chomamuang, T., Mesgarpour, M., Mahian, O., Wongwises, S. Case Stud. in Therm. Eng., 2023, vol. 51, p. 103525. https://doi.org/10.1016/j.csite.2023.103525

12. Minko, K.B. Yan'kov, G.G., Artemov, V.I., Krylov, V.S., Klement'ev, A.A. Teploenergetika, 2021, no. 9, pp. 51–63. https://doi.org/10.1134/S0040363621080063

13. Bespalov, V.V., Bespalov, V.I., Mel'nikov, D.V. Teploenergetika, 2017, no. 9, pp. 64–70. https://doi.org/10.1134/S0040363617090028

14. Sidorov, A.A., Yastrebov, A.K. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 2021, vol. 48, no. 1, pp. 65–75. DOI: 10.21822/2073-6185-2021-48-1-65-7515.

15. Bespalov, V.V., Tubolev, A.A., Galashov, N.N. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2022, vol. 333, no. 8, pp. 7–14. DOI: 10.18799/24131830/2022/8/3638.

16. Dmitriev, A.V., Yakimov, N.D., Khar'kov, V.V., Badretdinova, G.R. Inzhenerno-fizicheskiy zhurnal, 2023, vol. 96, no. 6, pp. 1456–1463.

17. Zinurov, V.E., Dmitriev, A.V., Sharipov, I.I., Galimova, A.R. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, energetika, 2021, vol. 7, no. 2(26), pp. 60–74. DOI: 10.21684/2411-7978-2021-7-2-60-74.

18. Guichet, V., Delpech, B., Jouhara, H. Int. J. of Heat and Mass Transf., 2023, vol. 203, p. 123813. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123813

19. Khauzen, Kh. Teploperedacha pri protivotoke, pryamotoke i perekrestnom toke [Heat transfer in countercurrent, direct current and cross current]. Moscow: Energoizdat, 1981. 384 p.

20. Isachenko, V.P., Osipova, V.A., Sukomel, A.S. Teploperedacha [Heat transfer]. Moscow: Energoizdat, 1981. 416 p.

21. Zhao, Q., Mao, B., Zhao, J., Li, H., Wei, S., Bai, X., Zhang, X., Zhang, Y. Case Stud. in Therm. Eng., 2022, vol. 40, p. 102495. https://doi.org/10.1016/j.csite.2022.102495

22. Bianco, V., Nardini, S., Manca, O. Nanoscale research letters, 2011, vol. 6, pp. 1–12. https://doi.org/10.1186/1556-276X-6-252

23. El Hasadi, Y.M.F., Padding, J.T. Chemical Engineering Science, 2023, vol. 265, p. 118195. https://doi.org/10.1016/j.ces.2022.118195

24. Zhao, Y., Luo, K., Shi, C., Guo, Q., Qin, K. Case Stud. in Therm. Eng., 2023, vol. 49, p. 103260. https://doi.org/10.1016/j.csite.2023.103260

25. Manninen, M., Taivassalo, V., Kallio, S. Technical Research Center of Finland. VTT Publications, 1996, vol. 288, p. 67.

26. Long, J., Yu, B., Wang, D., Liu, C., Shi, J., Chen, J. Case Stud. in Therm. Eng., 2023, vol. 52, p. 103758. https://doi.org/10.1016/j.csite.2023.103758

Key words in Russian: 
теплообмен, массообмен, коэффициент теплоотдачи, парогазовая смесь, переходный режим, численное моделирование
Key words in English: 
heat transfer, mass transfer, heat transfer coefficient, steam-gas mixture, transient mode, numerical modeling
The DOI index: 
10.17588/2072-2672.2024.5.042-051
Downloads count: 
13