Русская версия English version

The calculation of vapor compression and absorption heat pumps considering the hydraulic resistance of the refrigerant

V.V. Papin

Vestnik IGEU, 2025 issue 1, pp. 12—22

Download PDF

Abstract in English: 

Background. The known methods to assess the efficiency of heat transformers do not consider pressure losses in the transformer circuit. These losses seem to be insignificant. However, the issue is how insignificant they are and whether they should still be considered. The purpose of the study is to modernize available methods to calculate heat transformers to take into account the impact of refrigerant pressure losses in the heat transformer circuit.

Materials and methods. The methods of assessing the efficiency of a vapor compression and absorption transformers are based on the methods of V. Maake and P.A. Trubaev, and the methods of T.V. Morozyuk and L.S. Timofeevsky, respectively. The method of A.N. Noskov has been used to clarify the efficiency of the compressor. The hydraulic resistances of heat exchangers and pipelines in the circuits of heat transformers have been determined using available methods of domestic authors. The obtained resistance values have been displayed on the P-h diagram of the cycle.

Results. A modernized method for assessing the efficiency of vapor compression and absorption heat transformers has been obtained, considering pressure losses in the circuit. Calculations of the efficiency indicators of heat transformers are carried out using the obtained methodology. The results of the calculations correspond to the experimental data obtained earlier by V.O. Mamchenko and A.A. Malyshev.

Conclusions. Pressure losses in the circuit of the vapor compression heat transformer reduce the transformation ratio for example under study by 5,4 %, and in the circuit of the absorption heat transformer by 0,4 %. Accordingly, when assessing the efficiency of vapor compression heat transformers, pressure losses play a significant role.

References in English: 

1. Maake, V., Ekkert, G.Yu., Koshpen, Zh.L. Pol'mann: uchebnik po kholodil'noy tekhnike [Pohlmann: Textbook on refrigeration engineering]. Moscow, 1998. 1160 p.

2. Trubaev, P.A., Grishko, B.M. Teplovye nasosy [Heat pumps]. Belgorod: Izdatel'stvo BGTU, 2010. 143 p.

3. Brodyanskiy, V.M., Sokolov, E.Ya. Energeticheskie osnovy transformatsii tepla i protsessov okhlazhdeniya [Energy principles of heat transformation and cooling processes]. Moscow: Energoizdat, 1981. 320 p.

4. Noskov, A.N. Ob"emnye kompressory kholodil'nykh mashin [Positive displacement compressors of refrigeration machines]. Saint-Petersburg: Universitet ITMO, 2016. 33 p.

5. Syazin, I.E., Kas'yanov, G.I., Gukasyan, A.V. Osobennosti dinamicheskogo analiza kholodil'nogo porshnevogo kompressora [Features of dynamic analysis of refrigeration piston compressor]. Sovremennye nauchnye issledovaniya i innovatsii, 2021, no. 4. Available at: https://web.snauka.ru/issues/2021/04/95270 (date of access: 07/29/2024).

6. Danilova, G.N., Bogdanov, S.N., Ivanov, O.P., Mednikova, N.M. Teploobmennye apparaty kholodil'nykh ustanovok [Heat exchangers of refrigeration units]. Leningrad: Mashinostroenie, 1986. 303 p.

7. Bukin, V.G., Andreev, A.I., Bukin, A.V. Gidravlicheskoe soprotivlenie pri kipenii khladagentov v trubakh gorizontal'nykh i vertikal'nykh ispariteley sudovykh kholodil'nykh mashin [Hydraulic resistance during boiling of refrigerants in pipes of horizontal and vertical evaporators of marine refrigeration machines]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Morskaya tekhnika i tekhnologiya, 2020, no. 2, pp. 92–99.

8. Mamchenko, V.O., Malyshev, A.A. Plastinchatye teploobmenniki v nizkotemperaturnoy tekhnike i biotekhnologicheskikh protsessakh [Plate heat exchangers in low-temperature engineering and biotechnological processes]. Saint-Petersburg: NIU ITMO; IKhiBT, 2014. 116 p.

9. Volodin, V.I., Zditovetskaya, S.V. Metod rascheta parokompressionnykh transformatorov teploty [Method for calculating steam compression heat transformers]. Energetika. Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh ob"edineniy SNG, 2021, pp. 76–82.

10. Morozyuk, T.V. Teoriya kholodil'nykh mashin i teplovykh nasosov [Theory of refrigeration machines and heat pumps]. Odessa: Studiya «Negotsiant», 2006. 712 p.

11. Timofeevskiy, L.S., Pekarev, V.I., Bukharin, N.N., Danilov, M.M., Dzino, A.A. Teplovye i konstruktivnye raschety kholodil'nykh mashin, teplovykh nasosov i termotransformatorov. Ch.1. Raschet tsiklov, termodinamicheskikh i teplofizicheskikh svoystv rabochikh veshchestv [Thermal and design calculations of refrigeration machines, heat pumps and thermal transformers. Part 1. Calculation of cycles, thermodynamic and thermophysical properties of working substances]. Saint-Petersburg: SPbGUNiPT, 2006. 260 p.

Key words in Russian: 
парокомпрессионный трансформатор теплоты, абсорбционный трансформатор теплоты, фреон, гидравлические потери, тепловой насос, принципиальная схема абсорбционного теплового насоса, коэффициент трансформации
Key words in English: 
vapor compression heat transformer, absorption heat transformer, freon, hydraulic losses, heat pump, schematic diagram of an absorption heat pump, transformation ratio
The DOI index: 
10.17588/2072-2672.2025.1.012-022
Downloads count: 
14