Русская версия English version

Study of voltage unbalance in low-voltage electrical networks with microgeneration systems

D.K. Kugucheva, M.S. Kharitonov

Vestnik IGEU, 2025 issue 1, pp. 55—66

Download PDF

Abstract in English: 

Background. The issues of studying the influence of microgeneration facilities based on renewable energy sources on the quality indicators of electric power are not widely covered in national studies. However, due to the task set by the Government of the Russian Federation to increase the number of renewable energy sources used by active consumers, the relevance of the study is to determine the features of the influence of microgeneration facilities connected to low-voltage distribution electric networks on voltage unbalance to determine further development paths for this energy sector. The purpose of the study is to design a model of a low-voltage distribution electric network with microgeneration facilities and conduct a computational experiment to assess the influence of microgeneration facilities based on renewable energy sources on voltage unbalance, to determine the ways to improve the quality parameters of electric power associated with voltage unbalance.

Materials and methods. The study uses a simulation approach, applying a method of mathematical modeling implemented using software complexes NEPLAN and Load Profile Generator.

Results. The authors have identified the peculiarities of the impact of microgeneration units on positive voltage deviations and have conducted sensitivity analysis of nodes in the modeled network section based on voltage change criteria. The voltage unbalance coefficients in the negative sequence for the most sensitive network node at various levels of microgeneration unit penetration and different ways of their connection and control are determined. The study also has identified the characteristics of voltage change at each phase with different methods of controlling and connecting microgeneration units.

Conclusions. The deployment of microgeneration objects affects positive deviations in voltage and voltage unbalance. The main factors of this influence are the following: the method of connection and control of the microgeneration object, voltage unbalance before the deployment of microgeneration objects, the relationship between the instantaneous powers of the consumer load and the microgeneration object, the sensitivity of nodes to changes in voltage criteria, depending on the electrical distance of microgeneration objects from the main substation, feeder parameters, and load. It has been established that the most effective solution to the asymmetry problem is to redistribute the power provided by the microgeneration object among the phases of the power grid.

References in English: 

1. Kharitonov, M.S., Kugucheva, D.K. Issledovanie vliyaniya ob"ektov mikrogeneratsii na uroven' napryazheniya v elektricheskikh setyakh nizkogo napryazheniya [Study of the influence of microgeneration objects on the voltage level in low-voltage electrical networks]. Elektroenergiya. Peredacha i raspredelenie, 2024, no. 1(82), pp. 34–43.

2. Zakaryukin, V.P., Kryukov, A.V. Utochnennaya metodika opredeleniya vzaimnykh elektromagnitnykh vliyaniy smezhnykh liniy elektroperedachi [Refined methodology for determining the mutual electromagnetic influences of adjacent power lines]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki, 2015, no. 3-4, pp. 29–35.

3. Soldatov, V.A., Popov, N.M. Raschet nesimmetrichnykh rezhimov setey 0,38 kV v faznykh koordinatakh [Calculation of asymmetric modes of 0,38 kV networks in phase coordinates]. Trudy III Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Energoobespechenie i energosberezhenie v sel'skomhozyajstve», Moskva, 14–15 maya 2003 g. [Proceedings of the III International Scientific and Technical Conference “Power supply and energy saving in agriculture”, Moscow, May 14–15, 2003]. Moscow: VIESKh, 2003, part 1, pp. 136–141.

4. Zakaryukin, V.P., Kryukov, A.V., Tkhao, V.L. Kompleksnoe modelirovanie mul'tifaznykh, mnogotsepnykh i kompaktnykh liniy elektroperedachi [Integrated modeling of multiphase, multi-circuit and compact power transmission lines]. Irkutsk: IrGUPS, 2020. 296 p.

5. Frolov, Yu.M., Shelyakin, V.P. Osnovy elektrosnabzheniya [Basics of power supply]. Saint-Petersburg: Lan', 2022. Available at: https://e.lanbook.com/book/211058.

6.  Furfari, F.A., Brittain, J. Charles LeGeyt Fortescue and the method of symmetrical components. IEEE Industry Applications Magazine, 2002, vol. 8(3), p. 7. DOI.org/10.1109/MIA.2002.999605.

7. Kosoukhov, F.D., Vasil'ev, N.V., Filippov, A.O. Snizhenie poter' ot nesimmetrii tokov i povyshenie kachestva elektricheskoy energii v setyakh 0,38 kV s kommunal'no-bytovymi nagruzkami [Reducing losses from current asymmetry and improving the quality of electrical energy in 0,38 kV networks with household loads]. Elektrotekhnika, 2014, no. 6, pp. 8–12.

8. Vendin, S.V., Kilin, S.V., Solov'ev, S.V. Otsenka effektivnosti meropriyatiy po snizheniyu nesimmetrii i nesinusoidal'nosti v raspredelitel'nykh setyakh 0,4–10 kV [Evaluation of the effectiveness of measures to reduce asymmetry and non-sinusoidality in distribution networks 0,4–10 kV]. Innovatsii v APK: problemy i perspektivy, 2018, no. 2(18), pp. 3–19.

9. Naumov, I.V., Fedorinova, E.S., Yakupova, M.A. Snizhenie nesimmetrii zagruzki faz i sokrashchenie poter' elektricheskoy energii v setyakh 0,4 KV OGUEP «OBLKOMMUNENERGO» i OAO «IESK» [Reducing phase load asymmetry and reducing electrical energy losses in 0,4 kV networks of OGUEP “OBLKOMMUNENERGO” and JSC “IESK”]. Materialy nauchno-prakticheskoy konferentsii «Nauchno-issledovatel'skaya deyatel'nost' aspirantov v reshenii prioritetnykh zadach razvitiya agropromyshlennogo kompleksa», posvyashchennoy 70-letiyu aspirantury Irkutskogo GAU, p. Molodezhnyy, 06 dekabrya 2023 g. [Proceedings of the scientific-practical conference “Research activities of postgraduate students in solving priority problems of agricultural complex development”, dedicated to the 70th anniversary of postgraduate studies of Irkutsk State Agrarian University, Molodezhnyy, December 6, 2023]. Molodezhnyy: Irkutskiy gosudarstvennyy agrarnyy universitet im. A.A. Ezhevskogo, 2023, pp. 163–167.

10. Naumov, I.V., Fedorinova, E.S., Yakupova, M.A. Ustroystvo dlya upravleniya nesimmetrichnymi rezhimami v komponentakh nizkovol'tnykh sistem elektrosnabzheniya [Device for controlling asymmetric modes in components of low-voltage power supply systems]. Zhurnal Sibirskogo federal'nogo universiteta. Tekhnika i tekhnologii, 2023, vol. 16, no. 2, pp. 175–186.

11. Voronin, V.A. O dopustimykh otkloneniyakh napryazheniya dlya asinkhronnykh dvigateley [On permissible voltage deviations for asynchronous motors]. Sbornik materialov VIII Vserossiyskoy nauchno-prakticheskoy konferentsii molodykh uchenykh s mezhdunarodnym uchastiem «Rossiya molodaya», Kemerovo, 19–22 aprelya 2016 g. [Proceedings of the VIII All-Russian Scientific and Practical Conference of Young Scientists with International Participation “Young Russia”, Kemerovo, April 19–22, 2016]. Kemerovo: Kuzbasskiy gosudarstvennyy tekhnicheskiy universitet imeni T.F. Gorbacheva, 2016, p. 327.

12. Dulepov, D.E., Tyundina, T.E. Raschet nesimmetrii napryazheniy SES [Calculation of voltage asymmetry of solar power plants]. Vestnik NGIEI, 2015, no. 4(47), pp. 35–42.

13. Bulatov, Yu.N., Kryukov, A.V. Vliyanie nelineynoy i nesimmetrichnoy nagruzki na rabotu generatorov ustanovok raspredelennoy generatsii [Influence of nonlinear and asymmetrical load on the operation of generators of distributed generation installations]. Sistemy. Metody. Tekhnologii, 2017, no. 3(35), pp. 40–49. DOI: 10.18324/2077-5415-2017-3-40-49.

14. Samarin, G.N., Sukiasyan, S.M., Egorov, M.Yu. Problema nesimmetrii napryazheniy v sel'skikh setyakh i ee reshenie posredstvom razrabotki ustroystva simmetrirovaniya napryazheniy [The problem of voltage asymmetry in rural networks and its solution through the development of a voltage balancing device]. Izvestiya Velikolukskoy gosudarstvennoy sel'skokhozyaystvennoy akademii, 2013, no. 3, pp. 42–46.

15. Naumov, I.V. Simmetrirovanie rezhimov raboty vnutrennikh elektricheskikh trekhfaznykh setey kak sredstvo snizheniya pozharnoy opasnosti [Balancing operating modes of internal electrical three-phase networks as a means of reducing fire danger]. Aktual'nye voprosy agrarnoy nauki, 2021, no. 38, pp. 19–26.

16. Lykin, A.V. Elektricheskie sistemy i seti [Electrical systems and networks]. Novosibirsk: NGTU, 2017. Available at: https://e.lanbook.com/book/118089

17. Abdullazyanov, E.Yu., Zaripova, S.N., Fedotov, A.I., Akhmetshin, A.R. Uluchshenie pokazateley kachestva elektroenergii v raspredelitel'nykh setyakh napryazheniem 0,4–10 kV [Improving power quality indicators in distribution networks with voltage 0,4–10 kV]. Energetika Tatarstana, 2012, no. 1(25), pp. 3–7.

18. Chua, K.H., Lim, Y.S., Wong, J., Taylor, P., Morris, E., Morris, S. Voltage Unbalance Mitigation in Low Voltage Distribution Networks with Photovoltaic Systems. Journal of Electronic Science and Technology, 2012, vol. 10, issue 1, pp. 1–6.

19. Camilo, F.M., Castro, R., Almeida, M.E., Pires, F.V. Energy management in unbalanced low voltage distribution networks with microgeneration and storage by using a multi-objective optimization algorithm. Journal of Energy Storage, 2021, vol. 33, p. 102100. https://doi.org/10.1016/j.est.2020.102100.

20. Chua, K.H., Wong, J., Lim, Y.S., Taylor, P., Morris, E., Morris, S. Mitigation of Voltage Unbalance in Low Voltage Distribution Network with High Level of Photovoltaic System. Energy Procedia, 2011, vol. 12, pp. 495–501. https://doi.org/10.1016/j.egypro.2011.10.066.

21. Alabri, W., Jayaweera, D. Voltage regulation in unbalanced power distribution systems with residential PV systems. International Journal of Electrical Power & Energy Systems, 2021, vol. 131, p. 107036.

22.   Tang, N.C., Chang, G.W. A stochastic approach for determining PV hosting capacity of a distribution feeder considering voltage quality constraints. Proceedings of the International Conference on Harmonics and Quality of Power, Ljubljana, Slovenia, 13–16 May 2018. Ljubljana, Slovenia, 2018, pp. 1–5.

23. Barrero-González, F., Pires, V.F., Sousa, J.L., Martins, J.F., Milanés-Montero, M.I., González-Romera, E., Romero-Cadaval, E. Photovoltaic Power Converter Management in Unbalanced Low Voltage Networks with Ancillary Services Support. Energies, 2019, vol. 12, p. 972. https://doi.org/10.3390/en12060972

24. Pflugradt, N., Stenzel, P., Kotzur, L., Stolten, D. LoadProfileGenerator: An Agent-Based Behavior Simulation for Generating Residential Load Profiles. Journal of Open Source Software, 2022, vol. 7, issue 71, p. 3574. https://doi.org/10.21105/josP.03574

25. Kugucheva, D.K., Kharitonov, M.S. Nekotorye resheniya po otsenke potentsiala i povysheniyu effektivnosti ispol'zovaniya energii solntsa na primere Kaliningradskoy oblasti [Some solutions for assessing the potential and increasing the efficiency of using solar energy using the example of the Kaliningrad region]. Vestnik Severo-Kavkazskogo federal'nogo universiteta, 2021, no. 5(86), pp. 7–17. DOI: 10.37493/2307-907X.2021.5.1.  EDN RXUFZP.

26. Kugucheva, D.K., Kharitonov, M.S. Otsenka vliyaniya usloviy ekspluatatsii na funktsionirovanie fotoelektricheskikh paneley [Assessing the influence of operating conditions on the functioning of photovoltaic panels]. Materialy IX Mezhdunarodnogo Baltiyskogo morskogo foruma. V 6 t. T. 1. XIX Mezhdunarodnaya nauchnaya konferentsiya, Kaliningrad, 04–09 oktyabrya 2021 g. [Proceedings of the IX International Baltic Maritime Forum. In 6 vols. Vol. 1. XIX International Scientific Conference, Kaliningrad, October 4–9, 2021]. Kaliningrad: Kaliningradskiy gosudarstvennyy tekhnicheskiy universitet, 2022, pp. 599–605.

27. Umoh, V., Davidson, I., Adebiyi, A., Ekpe, U. Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks – A Review. Energies, 2023, vol. 16, p. 3609. https://doi.org/10.3390/en16083609

28. Naumov, I., Karamov, D., Tretyakov, A., Fedorinova, E., Yakupova, M. Additional electric loss in rural distribution networks 0,38 kV. E3S Web Conf., 2020, vol. 209, p. 07007. https://doi.org/10.1051/e3sconf/202020907007

29. Qemali, M., Bualoti, R., Celo, M. Voltage Stability Analysis in the Albanian Power System. Asian Online Journals (www.ajouronline.com) Asian Journal of Engineering and Technology, 2014, vol. 2, pp. 119–128.

30. Stanchev, P., Vacheva, G., Hinov, N. Evaluation of Voltage Stability in Microgrid-Tied Photovoltaic Systems. Energies, 2023, vol. 16, p. 4895. https://doi.org/10.3390/ en16134895

31. Section 5: Power Flow: Energy Distribution Systems (Oregon State University). Available at: clck.ru/37KXHC.

32. Seedahmed, M., Mokred, S., Kamara, G. Voltage Stability Estimation for Complex Power System Based on Modal Analytical Techniques. 6th International Conference on Signal Processing and Integrated Networks. Noida, India, 2019, pp. 1035–1041. DOI: 10.1109/SPIN.2019.8711683.

33. Omorov, T.T. Simmetrirovanie raspredelennoy elektricheskoy seti metodom tsifrovogo regulirovaniya [Balancing of a distributed electrical network using the digital control method]. Mekhatronika, avtomatizatsiya, upravlenie, 2018, vol. 19, no. 3, pp. 194–200.

Key words in Russian: 
качество электрической энергии, несимметрия напряжений, микрогенерация, отклонение напряжения, возобновляемые источники энергии, фотоэлектрические преобразователи
Key words in English: 
power quality, voltage unbalance, microgeneration, voltage deviation, renewable energy sources, photovoltaic converters
The DOI index: 
10.17588/2072-2672.2025.1.055-066
Downloads count: 
11