Русская версия English version

Numerical simulation of partial discharge sensors based on the finite element method for insulation diagnostics

S.N. Litvinov

Vestnik IGEU, 2025 issue 6, pp. 58—68

Download PDF

Abstract in English: 

Background. Various types of sensors, including inductive ones, are used for partial discharge diagnostics in the insulation of high-voltage equipment. Conventional approaches do not allow a comprehensive analysis of transient processes occurring in an electrical circuit with an inductive partial discharge sensor, as they fail to account for the sensor actual characteristics. Therefore, to obtain any reliable results, calibration of the measurement channel is required, which is not always feasible under real operating conditions. At the same time, accurate modeling of an inductive sensor that considers all physical phenomena occurring during the passage of a partial discharge impulse current, enables not only to determine its characteristics but also to calculate the apparent charge, which is the key parameter to assess insulation condition. Thus, it is relevant to develop a model that eliminates the need for calibration of the measuring channel and directly links the measured signal with the physical parameters of the discharge.

Materials and methods. A hybrid simulation model has been developed based on combination of the numerical solution of Maxwell’s equations using the finite element method with the analysis of an equivalent electrical circuit. The model accounts for the magnetic field, displacement currents through inter-turn capacitances, and interaction with the external circuit. Discrete Fourier transform and harmonic superposition method are employed for impulse signal analysis. The apparent charge is calculated by integrating the current over a quarter of the period.

Results. The author has developed the hybrid simulation model that allows us to calculate the sensor inductance with an error of 3,1 % compared to the analytical solution, determine the resonant frequency and quality factor (Q-factor), reconstruct the partial discharge impulse waveform using the first and third harmonics with an error of 1,84 %, and calculate the apparent charge value.

Conclusions. The proposed model allows for the design and analysis of inductive partial discharge sensors without requiring measurement channel calibration, directly correlating the registered signal with the physical parameters of the discharge. The model is universal and can be applied both for conventional measuring transducers and systems based on sensors without a ferromagnetic core. The results have been validated through comparison with analytical calculations and can be used for automated insulation diagnostics.

References in English: 

1. Korobeynikov, S.M., Vecherkin, M.V. Fizika vozniknoveniya, kharakteristika i klassifikatsiya chastichnykh razryadov v vysokovol'tnom oborudovanii [Physics of appearance, characterization and classification of partial discharges in high-voltage equipment]. Elektrotekhnicheskie sistemy i kompleksy, 2010, no. 18, pp. 204–212.

2. Kunicki, M., Kabot, O., Kozio, M. Partial Discharge Diagnostics of High Voltage Instrument Transformers – Case study. 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). Madrid, Spain, 2023, pp. 1–5. DOI: 10.1109/EEEIC/ICPSEurope57605.2023.10194710.

3. Zhuykov, A.V., Kolpakova, P.A., Matveev, D.A., Frolov, M.B., Khrenov, S.I. Issledovanie chastotnykh kharakteristik induktivnykh datchikov v skhemakh izmereniya chastichnykh razryadov [Studying the frequency characteristics of Inductive sensors used in partial discharge measurement circuits]. Elektrichestvo, 2023, no. 7, pp. 35–46. DOI: 10.24160/0013-5380-2023-7-35-46. EDN DGUVHX.

4. Zhuykov, A.V., Kolpakova, P.A., Matveev, D.A., Nikulov, I.I., Frolov, M.B. O primenenii vysokoinduktivnykh datchikov dlya izmereniya signalov chastichnykh razryadov elektricheskim metodom v usloviyakh zavodskikh ispytaniy [On the use of high-inductive sensors for partial discharge signals measurement by the electrical method in the factory test environment]. Elektrichestvo, 2023, no. 10, pp. 37–47. DOI: 10.24160/0013-5380-2023-10-37-47. EDN CYOCBK.

5. Fujimoto, A., Harakawa, T., Takanezawa, M., Tsubakihara, H. Calibration Methods of Partial Discharge Measuring for Online Insulation Diagnosis. 2022 9th International Conference on Condition Monitoring and Diagnosis (CMD). Kitakyushu, Japan, 2022, pp. 550–554. DOI: 10.23919/CMD54214.2022.9991632.

6. Demirchyan, K.S., Neyman, L.R., Korovkin, N.V., Chechurin, V.L. Teoreticheskie osnovy elektrotekhniki v 3 t., t. 3 [Theoretical Foundations of Electrical Engineering in 3 vols., vol. 3]. Saint-Petersburg: Piter, 2003. 377 p.

7. Mor, A.R., Castro Heredia, L.C. Practical frequency response characterization of a test circuit for partial discharge measurements. IEEE Transactions on Dielectrics and Electrical Insulation, August 2018, vol. 25, no. 4, pp. 1535–1544. DOI: 10.1109/TDEI.2018.006884.

8. Kalantarov, P.L., Tseytlin, L.A. Raschet induktivnostey: spravochnaya kniga [Inductance Calculations: Reference Book]. Leningrad: Energoatomizdat. Leningradskoe otdelenie, 1986. 488 p.

 

Key words in Russian: 
индуктивный датчик частичных разрядов, математическое моделирование, метод конечных элементов, гибридная модель, кажущийся заряд, дискретное преобразование Фурье, амплитудно-частотная характеристика, диагностика изоляции
Key words in English: 
inductive partial discharge sensor, mathematical modeling, finite element method, hybrid model, apparent charge, discrete Fourier transform, amplitude-frequency characteristic, insulation diagnostics
The DOI index: 
10.17588/2072-2672.2025.6.058-068
Downloads count: 
8