Background. An essential requirement of modern automated design of electrical machines is the stage of parametric optimization, including by using field models realized with engineering calculation packages, such as ANSYS Maxwell. However, parametric optimization does not allow us to find new technical solutions that take into account the distribution of collector machine magnetic field that is stationary relative to the stator. Despite its relevance, the problem of structural optimization of a collector machine has not been solved yet. The purpose of this study is to develop a methodology of structural and parametric optimization of collector machines.
Materials and methods. The search for the optimal design of the collector machine is carried out using a genetic algorithm with reference to the finite element model of the magnetic field at each optimization step. The MSExcel package is used, in which the EMLib magnetic field modeling library is implemented. The macros of the generation of the field model and the search for the optimal solution are written in the VBA language. To analyze the dynamic characteristics of the machine, MatLab Simulink is used.
Results. A parametric generator of the finite element model has been developed, which makes it possible, in the framework of one program code, to build models of magnetic field of collector machines of arbitrary types. This allowed us to organize an optimization process in which variations in the arguments change both the machine parameters and its design, which quite well corresponds to the definition of structural-parametric optimization. To this end, we have carried out decomposition of the computational domain of the collector and developed principles of joining the typical fragments. The variants of machine design obtained during the optimization processs are investigated using a field dynamic model. A technique of structural-parametric optimization of collector machines has been developed. The technique makes it possible to save substantially active materials at the design stage by finding new structural solutions.
Conclusions. The developed methodology is focused on the use of available software and can be used in small-scale and single-piece production of electrical machines, even in small and medium-sized businesses.