Русская версия English version

Development of a mathematical model of multi-current heat exchangers taking into account phase transition in heat carriers

K.A. Kasatkin, A.E. Barochkin, V.P. Zhukov, G.G. Orlov

Vestnik IGEU, 2018 issue 5, pp. 61—67

Download PDF

Abstract in English: 

Background: The models of multi-flow heat exchangers described in literature sources do not take into account possible phase transition in heat carriers. However, in a number of cases, for example, in multi-flow heat exchangers for utilization of moisture and thermal energy from flue gases at thermal power plants, condensing water vapor changes the phase state. The fact that there are no methods for calculating such devices puts the brakes on the development of effective technological solutions. Thus, the development of modeling of multi-flow heat exchangers for describing the phase transition in the heat carriers is an urgent problem for the energy and related industries.

Materials and methods: The model for multi-flow heat exchangers taking into account the phase transition in heat carriers has been constructed as a set of differential equations based on the heat balance for each of the heat carrier flows. The analytical solution to the system of the linear differential equations was obtained by the trial function method, the numerical solution to the same system was found by the Runge-Kutta method.

Results: We have developed a mathematical description of a multi-flow heat exchanger taking into account the phase transformation in heat carriers. We have also found and studied analytical and numerical solutions for the contact heat exchanger for moisture and heat energy utilization from flue gases of TPPs, and shown the possibilities of making design calculations in the framework of the proposed model.

Conclusions: The developed mathematical model can be used as the basis for more efficient methods of organizing heat transfer processes in technological equipment used for various purposes with an arbitrary number of heat carriers taking into account phase transition in them.

References in English: 

1. Barochkin, A.E., Zhukov, V.P. Vestnik IGEU, 2017, no. 3, pp. 70–75. doi: 10.17588/2072-2672.2017.3.070-075.

2. Sedlov, A.S., Solodov, A.P., Bukhonov, D.Yu.  Energosberezhenie i vodopodgotovka, 2006, no. 5, pp. 76–77.

3. Bespalov, V.V., Bespalov, V.I. Izvestiya Tomskogo politekhnicheskogo universiteta, 2010, vol. 316, no. 4, pp. 56–59.

4. Aronov, I.Z. Kontaktnyy nagrev vody produktami sgoraniya prirodnogo gaza [Contact heating of water by natural gas combustion products]. Leningrad: Nedra, 1990. 280 p.

5. Sviridov, N.F., Sviridov, R.N., Ivukov, I.N., Terk, B.L.  Novosti teplosnabzheniya, 2002, no. 8, pp. 29–31.

6. Galustov, V.S.  Energiya i menedzhment, 2004, no. 6, p. 44.

7. Belosel'skiy, B.S., Solyakov, B.S. Energeticheskoe toplivo [Power fuel]. Moscow: Energiya, 1980. 168 p.

8. Andreev, E.I. Raschet teplo- i massoobmena v kontaktnykh apparatakh [Calculation of heat and mass transfer in contact devices]. Moscow: Energoatomizdat, 1985. 172 p.

9. Nazmeev, Yu.G. Gidrodinamika i teploobmen zakruchennykh potokov reologicheski slozhnykh sred [Hydrodynamics and heat transfer of swirl flows of rheologically complex media]. Moscow: Energoatomizdat, 1996, pp. 67–94.

10. Isachenko, V.P., Osipova, V.A., Sukomel, A.S. Teploperedacha [Heat transfer]. Moscow: Energoatomizdat, 1981. 416 p.

11. Baranovskiy, N.V., Kovalenko, L.M., Yastrebenetskiy, A.R. Plastinchatye i spiral'nye teploobmenniki [Plate and spiral heat exchangers]. Moscow: Mashinostroenie, 1973. 288 p.

12. Nazmeev, Yu.G., Lavygin, V.M. Teploobmennye apparaty TES [Heat exchangers of thermal power plants]. Moscow: Energoatomizdat, 1998. 288 p.

13. Aronson, K.E., Blinkov, S.N., Brezgin, V.I. Teploobmenniki energeticheskikh ustanovok [Heat exchangers for power plants]. Ekaterinburg: Sokrat, 2003. 968 p.

14. Zhukov, V.P., Barochkin, E.V. Sistemnyy analiz energeticheskikh teplomassoobmennykh ustanovok [System analysis of power heat and mass exchange plants]. Ivanovo, 2009. 176 p.

15. Barochkin, A.E., Zhukov, V.P., Belyakov, A.N.  Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2011, vol. 54, issue 11, pp. 116–119.

16. Vlasov, V.G. Konspekt lektsiy po vysshey matematike [An abstract of lectures on higher mathematics]. Moscow: Ayris, 1996. 287 p.

17. Samarskiy, A.A. Vvedenie v chislennye metody [Introduction to numerical methods]. Saint-Petersburg: Lan', 2005. 288 p.

Key words in Russian: 
теплопередача, поток теплоносителей, фазовый переход, модель многопоточных теплообменников, аналитическое решение, численное решение
Key words in English: 
heat transfer, heat carrier flow, phase transition, multi-flow heat exchanger model, analytical solution, numerical solution
The DOI index: 
10.17588/2072-2672.2018.5.061-067
Downloads count: 
29