Русская версия English version

Improving the accuracy and time of calculating steady-state modes of increased frequency electrical systems

A. Tankoy, T.E. Shadrikov, A. Gusenkov, V. Lebedev, A. Sokolov

Vestnik IGEU, 2019 issue 3, pp. 22—31

Download PDF

Abstract in English: 

Background. The authors of modern Russian and foreign works suggest using the method of frequency analysis with Fourier transforms for modeling alternating current systems with a non-sinusoidal supply voltage. By applying the above-mentioned method to calculating steady-state modes of increased frequency power electrical systems (IFPES), we have found that there are significant differences between the calculated and experimental results, and the model calculation time is long. These problems can be solved by obtaining generalized formula expressions for the internal resistance value of IGBT transistors and the amplitudes of the acting EMF (voltage) in the IFPES applying Fourier decomposition.

Materials and methods. The generalized expressions for determining the internal resistance of IGBT transistors were obtained by analyzing physical processes of charge diffusion. The amplitude of the acting EMF (voltage) was determined by numerical integration.

Results. Simplified analytical expressions suitable for determining the frequency dependence of the resistance of IGBT transistors in the open state in electrical devices have been obtained. The IFPES calculation rate model has been optimized by frequency analysis.

Conclusions. The obtained generalized analytical expressions allow making more accurate calculations of the transistor internal resistance value (with a difference of 70 % compared to the previously used value). By optimizing the calculation method we were able to reduce the model calculation from 8 hours to 3 minutes with Nk = 3000 harmonics. The modernized method can be used not only for calculating the IFPES but also for analyzing any electrical circuits with power electronics components exposed to non-periodic and non-sinusoidal currents and voltages.

 

References in English: 

1. Gusenkov, A.V., Lebedev, V.D., Sokolov, A.M., Shadrikov, T.E., Strahov, A.S. Osobennosti primeneniya chastotnogo analiza pri raschete elektricheskikh tsepey s tranzistornymi preobrazovatelyami napryazheniya [Frequency analysis in the calculation of electrical circuits with transistor voltage converters]. Elektrichestvo, 2016, no. 1, pp. 4–12.

2. Osipov, Yu.M. Chastotnyy i vremennoy analiz statsionarnykh i perekhodnykh kharakteristik lineynykh elektricheskikh tsepey. Ch. 2 [Frequency and time analysis of stationary and transient characteristics of linear electric circuits: a study guide for Electrical Engineering and Theory of Electrical Engineering. Part 2]. Saint-Petersburg: SPbGITMO (TU), 2002. 99 p.

3. Rozanov, Yu.K. Poluprovodnikovye preobrazovateli so zvenom povyshennoy chastoty [Semiconductor converters with an increased frequency unit]. Moscow: Energoatomizdat, 1987. 184 p.

4. Gurtov, V.A. Tverdotel'naya elektronika [Solid state electronics]. Petrozavodsk, 2004. 312 p.

5. Rozanov, Yu.K. Osnovy silovoy elektroniki [Power Electronics Basics]. Moscow: Energoatomizdat, 1992. 296 p.

6. Bonomorskii, O.I., Kyuregyan, A.S., Gorbatyuk, A.V., Ivanov, B.V. Comparative analysis of static characteristics of insulated gate bipolar transistors and thyristors with static induction. Russian Electrical Engineering, 2015, vol. 86, no. 2, pp. 93–97.

7. Babenko, V.P., Bityukov, V.K., Kuznetsov, V.V., Simachkov, D.S. Modelirovanie staticheskikh i dinamicheskikh poter' v MOSFET-klyuchakh [Simulation of static and dynamic losses in MOSFET transistors]. Rossiyskiy tekhnologicheskiy zhurnal, 2018, vol. 6, no. 1(21), pp. 20–39.

8. Gusenkov, A.V., Lebedev, V.D., Soko-lov, A.M., Shadrikov, T.E.  O vozmozhnosti i tselesoobraznosti fizicheskogo modelirovaniya elektroperedachi s netraditsionnymi parametrami ispol'zuemykh tokov i napryazheniy [On possibility and feasibility of physical modeling of power transmission with non-traditional parameters of currents and voltages]. Energetik, 2015, no. 4, pp. 29–32.

9. Gusenkov, A.V., Lebedev, V.D., Shadrikov, T.E., Sokolov, A.M. Vybor rabochego napryazheniya vysokovol'tnoy kabel'noy elektroperedachi povyshennoy chastoty [Selection of operating voltage of high-voltage cable increased-frequency power transmission].
Elektrotekhnika,  2016, no. 10, pp. 50–56.

10. Shadrikov, T.E., Gusenkov, A.V., D'yachkov, A.A., Simakova, A.A. Metodika opredeleniya emkostnykh i induktivnykh parametrov silovykh vysokovol'tnykh transformatorov povyshennoy chastoty [Method of determining capacitance and inductance parameters of increased frequency high-voltage power transformers]. Vestnik IGEU, 2016, issue 1, pp. 27–33.

11. Gusenkov, A.V., Lebedev, V.D., Sokolov, A.M., Shadrikov, T.E., Abel', Tankoj. Spektral'nyy analiz elektrodvizhushchey sily elektroustanovki povyshennoy chastoty [Spectral analysis of electromotive force of an increased frequency electrical installation]. Elektrichestvo, 2018, no. 2, pp. 17–26.

12. Starikov, A.V., Kuznetsov, V.V., Rokalo, D.Yu. Analiz garmonicheskogo sostava trapetseidal'nogo faznogo napryazheniya, formiruemogo chastotnym preobrazovatelem [Analysis of harmonic composition of the trapezoidal phase voltage generated by a frequency converter]. Vestnik Samarskogo gosudarstvennogo tekh-nicheskogo universiteta. Seriya: Tekhnicheskie nauki, 2017, no. 3(55), pp. 75–79.

13. Sadikov, D.G., Titov, V.G. Analiz garmonicheskogo sostava toka i napryazheniya, potreblyaemogo preobrazovatelyami chastoty [Analysis of harmonic composition of current and voltage consumed by frequency converters]. Vestnik Chuvashskogo universiteta, 2015, no. 1, pp. 116–121.

14. Zyryanov, V.M., Mitrofanov, N.A., Sokolovskiy, Yu.B. Issledovanie garmonicheskogo sostava napryazheniya preobrazovatelya chastoty [A study of harmonic composition of a frequency converter voltage]. Elektrooborudovanie: ekspluatatsiya i remont, 2016, no. 9, pp. 34–40.

15. Gerard Hurley, William & Gath, Eugene & Breslin, John. (2000). Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms. Power Electronics, IEEE Transactions on. 15. 369–376. 10.1109/63.838110.

 

Key words in Russian: 
методика расчета, частотный анализ, преобразователь напряжения, повышенная частота, сопротивление транзисторов, численное интегрирование, аналитическое выражение, ЭДС, разложение Фурье
Key words in English: 
calculation method, frequency analysis, voltage transformer, increased frequency, resistance of transistors, numerical integration, analytical expression, EMF, Fourier decomposition
The DOI index: 
10.17588/2072-2672.2019.3.022-031
Downloads count: 
23