Background. One of the effective ways to intensify heat exchange processes in the bulk tank is organization of gas filtration through the tank. However, it is necessary to compare the positive effect obtained by reducing the heating time and, hence, the required amount of heat input with the resistance of the bulk tank, which affects the choice of equipment. The existing formulas for determining tank layer resistance, as a rule, have a limited application range due to a number of structural parameteres. Thus, obtaining the value of the aerodynamic resistance of bulk tanks of different structures is an important task for determining the amount of energy consumed for the organization of the filtration process.
Materials and methods. The work employed the data obtained in the experimental study of fluid filtration through a porous medium in the range of porosity values. The method of nonlinear regression analysis was used to approximate the desired dependence.
Results. Based on the data on the resistance of bulk tanks of different porosity obtained in the experimental study, the authors have derived an empirical polynomial dependence of the resistance of bulk tanks on the fluid mass flow rate and porosity. This equation can be applied for the filtration rate values from 2 to 8 m/s and porosity values from 0,345 to 0,888 regardless of the structural parameters of the bulk tank layer. The authors carried out mathematical modeling of the air filtration process through the tank by replacing the real structure with a fractal-like model.
Conclusions. The obtained results allow optimizing the operating parameters of the equipment in thermal heating furnaces, and the presented dependence can be used to determine the aerodynamic resistance of bulk tanks, affecting the choice of traction equipment in the reconstruction of furnaces. The accuracy of the obtained results is determined by the experiment error, which does not exceed 7 %.