Русская версия English version

Development of a condition monitoring system for the refractory lining of induction crucible steelmaking furnaces

I.Yu. Dolgikh, M.G. Markov

Vestnik IGEU, 2019 issue 5, pp. 58—66

Download PDF

Abstract in English: 

Background. A wide range of technological advantages of induction crucible melting furnaces makes their use in various sectors of metallurgical production relevant. However, hard operation conditions of the refractory lining of such furnaces makes it necessary to constantly monitor its condition, with the aim to extend the crucible life and prevent emergencies. Moreover, traditional methods based on the use of a bottom electrode and indication of current leakage to earth do not provide a continuous display of the lining destruction degree and make it possible to register only a critical level that requires an emergency shutdown and emptying of the furnace. This circumstance makes it necessary to develop and implement specialized electrical systems with a monitoring and control system that ensures the determination and visualization of the lining wear level and, if necessary, makes an emergency shutdown of the equipment from the power source.

Materials and methods. The developed complex is based on a microprocessor system that continuously measures the temperature at the control points at the boundary between the bottom and crucible base layers and compares the obtained values with the settings, which are determined previously on a two-dimensional axisymmetric model of the designed furnace by solving the stationary heat conduction equation at various levels of lining failure.

Results. We have developed the structure, scheme, and program for a microprocessor-based monitoring and emergency shutdown system of an induction furnace, as well as a mathematical model of the control object, which allows determining the temperature settings. The reliability of the results is confirmed by the applicability of the models to real objects, and is verified by debugging the microprocessor part in the MPLab-Sim and Proteus programs.

Conclusions. The obtained results can be used in the practical implementation of the monitoring system and emergency shutdown of induction melting furnaces, which allows increasing the safety of their operation and extending the lining life due to timely repair.

 

References in English: 

1. Teoreticheskie osnovy i aspekty elektrotekhnologiy. Fizicheskie printsipy i realizatsiya. Intensivnyy kurs. Osnovy I [Theoretical foundations and aspects of electrical technology. Physical principles and realization. Intensive course. Fundamentals I]. Saint-Petersburg: Izdatel'stvo SPbGETU «LETI», 2013. 359 p.

2. Kukartsev, V.A. Vyplavka chuguna i stali v induktsionnykh tigel'nykh pechakh promyshlennoy chastоty [Smelting of iron and steel in induction crucible furnaces of industrial frequency]. Stal', 2016, no. 5, pp. 26–28.

3. Fomin, N.I., Zatulovskiy, L.M. Elektricheskie pechi i ustanovki induktsionnogo nagreva [Electric furnaces and induction heating installations]. Moscow: Metallurgiya, 1979. 247 p.

4. Sidorov, A.V. Tekhniko-ekonomicheskoe obosnovanie effektivnosti plavki metalla induktsionnym metodom [Feasibility study on the efficiency of metal melting by induction method]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta, 2006, no. 41, pp. 165–168.

5. Luzgin, V.I., Petrov, A.Yu. Sovremennye tekhnologii pererabotki loma chernykh i tsvetnykh metallov [Modern technologies of processing ferrous and non-ferrous metals]. Metallurg, 2008, no. 4, pp. 39–43.

6. Kuvaldin, A.B., Pogrebisskiy, M.Ya., Fedin, M.A. Osobennosti rascheta i upravleniya induktsionnymi plavil'nymi tigel'nymi pechami i mikserami [Calculation and control of induction melting crucible furnaces and mixers]. Sbornik dokladov nauchno-tekhnicheskogo seminara «Elektrotekhnologiya v pervom desyatiletii XXI veka» [Collection of papers of the scientific and technical seminar «Electrotechnology in the first decade of the XXI century»]. Moscow: Izdatel'skiy dom MEI, 2013, pp. 227–241.

7. Optimizatsiya i upravlenie elektrotekhnologicheskimi sistemami. Intensivnyy kurs. Spetsializatsiya III [Optimization and operation of electrical technology systems. Intensive course. Specialization III]. Saint-Petersburg: Izdatel'stvo SPbGETU «LETI», 2013. 266 p.

8. Fedin, M.A. Vozmozhnosti upravleniya plavkoy v induktsionnykh tigel'nykh pechakh [Smelting control capabilities in induction crucible furnaces]. Avtomatizatsiya v elektroenergetike i elektrotekhnike, 2015, vol. 1, pp. 290–296.

9. Kostyukova, A.P. Informatsionnoe obespechenie monitoringa protsessa plavki v induktsionnykh tigel'nykh pechakh [Information support for monitoring the melting process in induction crucible furnaces]. Sovremennye naukoemkie tekhnologii, 2018, no. 6, pp. 96–100.

10. Kukartsev, V.A., Trunova, A.I., Kukartsev, A.V. Termicheskiy analiz kvartsita, ispol'zuemogo dlya futerovki induktsionnoy tigel'noy pechi promyshlennoy chastoty [Thermal analysis of quartzite used for industrial frequency crucible furnace lining]. Novye ogneupory, 2014, no. 5, pp. 33–35.

11. Zinchenko, Yu.A. Optimizatsiya sostava futerovki plavil'nykh pechey [Optimization of the composition of the melting furnaces lining]. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 2009, no. 3(42), pp. 481–491.

12. Prakht, V.A., Dmitrievskiy, V.A., Sarapulov, F.N. Modelirovanie teplovykh i elektromagnitnykh protsessov v elektrotekhnicheskikh ustanovkakh [Modeling of thermal and electromagnetic processes in electrical installations]. Moscow: Izdatel'stvo «Sputnik+», 2011. 158 p.

13. Soyfer, V.M. Vyplavka stali v kislykh elektropechakh [Steel smelting in acid electric furnaces]. Moscow: Mashinostroenie, 2009. 480 p.

14. Shilo, V.L. Populyarnye tsifrovye mikroskhemy [Popular digital circuits]. Moscow: Radio i svyaz', 1989. 352 p.

Key words in Russian: 
индукционные тигельные печи, огнеупорная футеровка, система мониторинга и управления, термопара, микроконтроллер
Key words in English: 
induction crucible furnaces, refractory lining, monitoring and control system, thermocouple, microcontroller
The DOI index: 
10.17588/2072-2672.2019.5.058-066
Downloads count: 
16