Русская версия English version

Parametric model of synchronous reluctance motor with TLA-rotor in steady-state and transient modes

V.N. Karaulov, A.F. Dorzhinkevich

Vestnik IGEU, 2023 issue 4, pp. 46—53

Download PDF

Abstract in English: 

Background. There is considerable practical and scientific interest in synchronous reaction motors (SynRM) with TLA rotor. The core of the TLA rotor has a transversal charge, internal slots, and highly saturated areas. The configuration of the rotor slots is complex and diverse. The task to develop a parametric model of the SynRM with a TLA-rotor designed for calculation of steady-state and transient modes of the motor is relevant.

Materials and methods. The classical parametric model of SynRM based on the theory of two reactions is used. The calculation method for the parameters of the SynRM model with TLA rotor is presented. The method uses the results of field calculation of two static states of the magnetic field. The steady-state conditions of SynRM are calculated according to the engineering formulas derived from the equation of equilibrium stresses in the stator phase. The Park-Gorev equations are used to calculate the transient modes of the SynRM.

Results. Field models of the SynRM under study at longitudinal and transverse rotor positions are presented. Main harmonics of magnetic field in the gap and their dependence on armature current are calculated. Formulas to calculate the inductive parameters of armature winding and performance characteristics of SynRM are given. Differential equations to calculate processes in SynRM are given. The parametric model is used to calculate performance characteristics of SynRM, frequency start process, electromechanical process of SynRM operation in case of asymmetric power supply. The calculation results are compared with the results of field simulation of SynRM with TLA rotor in the Ansys Maxwell environment.

Conclusions. The classical parametric model of the synchronous machine based on the theory of two reactions allows fast and high-quality analysis of steady-state and transient modes of operation of a synchronous reactive motor with TLA-rotor under various conditions of power supply and mechanical load, including abnormal ones.

References in English: 

1. Shul'ga, R.N. Sinkhronnyy reaktivnyy dvigatel' v sovremennom elektroprivode [Synchronous reluctance engine in a private electric drive]. Elektrooborudovanie: ekspluatatsiya i remont, 2023, no. 1, pp. 44–55. EDN JMGRWE.

2. Tikhomirov, O.I. Sinkhronnye reaktivnye elektrodvigateli dlya sozdaniya energoeffektivnykh resheniy klassa IE5 [Synchronous reluctance motors for creating energy-efficient solutions of class IE5]. Automation in industry, 2022, no. 1, pp. 42–44. DOI: 10.25728/avtprom.2022.01.09. EDN UNYBKL.

3. Mitrofanov, I.I. Optimal'noe po tochnosti upravlenie uglovoy skorost'yu sinkhronnogo reaktivnogo dvigatelya [Optimal control of the angular velocity of a synchronous jet engine in terms of accuracy]. Izvestiya Tula State University. Technical sciences, 2012, no. 11-1, pp. 186–190. EDN PYURRB.

4. Ptakh, G.K. Sravnitel'naya otsenka elektricheskikh dvigateley peremennogo toka asinkhronnogo i sinkhronnogo tipov s tsel'yu primeneniya ikh v grebnykh elektroustanovkakh ledokolov bol'shoy moshchnosti [Comparative evaluation of alternating current electric motors of asynchronous and synchronous types for the purpose of their application in rowing electrical installations of icebreakers of high power]. Izvestiya of higher educational institutions. Electromechanics, 2019, vol. 62, no. 5, pp. 24–30. DOI: 10.17213/0136-3360-2019-5-24-30. EDN ISPZZZ.

5. Zakharov, A.V., Malafeev, S.I., Dudulin, A.L. Synchronous reluctance motor: Design and experimental research. 2018 X International Conference on Electrical Power Drive Systems (ICEPDS). Novocherkassk, 2018, pp. 1–4. DOI: 10.1109/ICEPDS.2018.8571500.

6. Murataliyev, M., Degano, M., Di Nardo, M., Bianchi, N., Gerada, C. Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison. Proceedings of the IEEE, 2022, vol. 110, pp. 1–18. DOI: 10.1109/JPROC.2022.3145662.

7. Paramonov, A.S., Kazakbaev, V.M., Oshurbekov, S.Kh., Prakht, V.A. Sravnenie energopotrebleniya asinkhronnogo i sinkhronnogo reaktivnogo dvigateley v nasosnom prilozhenii [Comparison of power consumption of asynchronous and synchronous jet engines in a pumping application]. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh, posvyashchennoy pamyati prof. Danilova N.I. (1945–2015) «Energo- i resursosberezhenie. Energoobespechenie. Netraditsionnye i vozobnovlyaemye istochniki energii. Atomnaya energetika» (Danilovskikh chteniy), Ekaterinburg, 09–13 dekabrya 2019 goda [Materials of the International Scientific and Practical Conference of Students, postgraduates and Young Scientists dedicated to the memory of Prof. Danilova N.I. (1945–2015) “Energy and resource conservation. Energy supply. Unconventional and renewable energy sources. Nuclear power engineering” (Danilovsky Readings), Yekaterinburg, December 09–13, 2019]. Ekaterinburg, 2019, pp. 300–303.

8. Han, Y., Wu, X., He, G., Hu, Y., Ni, K. Nonlinear magnetic field vector control with time-varying parameters for high-power electrically excited synchronous motor. IEEE Transactions on Power Electronics, 2020, pp. 11053–11063.

9. Choi J.-s., Ko J.-s., Chung D.-h. Efficiency Optimization Control of SynRM Drive. 2006 SICE-ICASE International Joint Conference. Busan, Korea (South), 2006, pp. 690–695. DOI: 10.1109/SICE.2006.315625.

10. Kazakbaev, V.M., Prakht, V.A., Dmitrievskiy, V.A. Raschet rabochikh kharakteristik sinkhronnogo reaktivnogo dvigatelya v privode nasosa [Calculation of the performance characteristics of a synchronous jet engine in a pump drive]. Materialy III Mezhdunarodnoy konferentsii «Aktual'nye problemy energosberegayushchikh elektrotekhnologiy» (APEET-2014), Ekaterinburg, 17–20 marta 2014 goda [Proceedings of the III International Conference “Actual problems of energy-saving electrical technologies” (APEET-2014), Yekaterinburg, March 17–20, 2014]. Ekaterinburg, 2014, pp. 238–243. EDN VULCJB.

11. Samoseyko, V.F., Sharashkin, S.V., Gel'ver, F.A. Identifikatsiya parametrov reaktivnogo elektrodvigatelya s anizotropnoy magnitnoy provodimost'yu rotora [Identification of parameters of a reactive electric motor with anisotropic magnetic conductivity of the rotor]. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova, 2017, vol. 9, no. 3, pp. 637–644. DOI: 10.21821/2309-5180-2017-9-3-637-644. EDN YTXYGX.

12. Tursini, M., Villani, M., Fabri, G., Credo, A., Parasiliti, F., Abdelli, A. Synchronous Reluctance Motor: Design, Optimization and Validation. 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2018, pp. 1297–1302. DOI: 10.1109/SPEEDAM.2018.8445304.

13. Barta, J., Ondrusek, C. Rotor design and optimization of synchronous reluctance machine. MM Science Journal, 2015, pp. 555–559. DOI: 10.17973/MMSJ.2015_03_201504.

14. Suvorkova, E.E., Dement'ev, Yu.N., Burul'ko, L.K. Raschet magnitnykh poley i induktivnykh parametrov sinkhronnykh reaktivnykh dvigateley [Calculation of magnetic fields and inductive parameters of synchronous jet engines]. Fundamental'nye issledovaniya, 2016, no. 6-1, pp. 112–116.

Key words in Russian: 
синхронный реактивный двигатель, рабочие характеристики синхронного реактивного двигателя, TLA-ротор, параметрическая модель, установившиеся режимы работы двигателя, переходные режимы работы двигателя
Key words in English: 
synchronous reluctance motor, operating characteristics of synchronous reluctance motor, TLA-rotor, parametric model, steady-state operating modes of the motor, transient operating modes of the motor
The DOI index: 
10.17588/2072-2672.2023.4.046-053
Downloads count: 
15