Русская версия English version

System for continuous monitoring of technical condition and maintenance diagnostics of steam turbine

K.N. Bubnov, V.P. Zhukov, A.V. Golubev, E.V. Barochkin, S.I. Shuvalov

Vestnik IGEU, 2023 issue 4, pp. 85—93

Download PDF

Abstract in English: 

Background. Power equipment deterioration occurs during operation, it causes loss in reliability and efficiency, unscheduled shutdowns, and accidents. Now predictive analytics is one of the promising directions in the field of power engineering which allows to control and analyze the technical condition of power equipment. The problems of localization of deviation of technological parameters and detection of anomaly in the operation of power equipment are consistently solved in the framework of predictive analytics. The problems of deviations localization and anomalies detection are solved by the methods of statistical modeling and the classification algorithms respectively. However, for steam turbines the localization of deviation and the detection of anomalies having slow-flowing character are a difficult problem. Therefore, the issue of development of a method for continuous monitoring of technical condition and maintenance diagnostics based on a mathematical model of the steam turbine section flow characteristics is worth noticing. The method allows us to consider the effect of changes in the open flow area of the individual sections of a steam turbine on the pressure distribution over the steam flow path.

Materials and methods. The model of a steam turbine has been developed within the matrix formalization methodology. The solution of the system of linear and nonlinear equations is carried out by methods of computational mathematics. The solution of the optimization problems of the steam flow path diagnostics is carried out by methods of mathematical programming.

Results. A mathematical model of the cogeneration steam turbine Т-250/305-23.5-DB and a method for continuous condition monitoring and maintenance diagnostics of steam turbine have been developed. It allows us to localize deviation and detect anomaly by recovery of the open flow area of the individual sections of a steam turbine based on the pressure distribution over the steam flow path.

Conclusions. The results of the statistical analysis prove that a mathematical model of the cogeneration steam turbine Т-250/305-23.5-DB has been recognized adequate. The method for continuous condition monitoring and maintenance diagnostics of steam turbine has demonstrated consistency of the obtained results and ability to solve diagnostic problems in practice. The developed model and method can be used as a module in the development of a software package for predictive analytics of power equipment.

References in English: 
  1. Murmanskiy, B.E., Brodov, Yu.M., Lebedev, V.V., Vasenin, S.L. Strategiya remontov parovykh turbin na osnove analiza nadezhnosti ikh uzlov [Steam turbine repair strategy based on reliability analysis of their components]. Nadezhnostʹ i bezopasnostʹ energetiki, 2014, no. 4(27), pp. 58–63.
  2. Orlik, V.G., Averkina, N.V., Aznabaev, A.A., Kachuriner, Yu.Ya., Nosovitskiy, I.A., Filaretov, M.A., Chervonnyy, V.F. Snizhenie abrazivnoy erozii turbinnykh stupeney peregretogo para [Reduction of abrasive erosion of superheated steam turbine stages]. Elektricheskie stantsii, 2008, no. 12, pp. 33–41.
  3. Khaimov, V.A., Voropaev, Yu.A., Levchenko, A.I., Fedorova, L.V. Modernizatsiya pervoy stupeni TsSD turbiny K-300-240 LMZ s tsel'yu umen'sheniya erozionno-abrazivnogo iznosa protochnoy chasti [Modernization of the first stage of the IPC of the K-300-240 LMZ turbine in order to reduce the erosion-abrasive wear of the flow path]. Elektricheskie stantsii, 2011, no. 9, pp. 8–16.
  4.  Khaimov, V.A., Kachuriner, Yu.Ya., Voropaev, Yu.A. Erozionnyy iznos tverdymi chastitsami protochnoy chasti TsSD-1 T-250/300-240 [Erosion wear by solid particles of the flow part of the IPC-1 T-250/300-240]. Elektricheskie stantsii, 2004, no. 4, pp. 14–20.
  5. Kleymenov, N.G., Andryushin, V.M., Korzhov, E.N., Agapova, A.V. Otrabotka rezhima khimicheskoy promyvki turbin K-300-240 KhTGZ pod nagruzkoy [Development of chemical washing of turbines K-300-240 KhTGZ under load]. Teploenergetika, 1977, no. 1, pp. 52–55.
  6. Margulova, T.Kh., Troyanovskiy, B.M., Samoylovich, G.S., Razumovskaya, E.D., Kuz'micheva, L.V. Vliyanie vodnogo rezhima raboty parovykh turbin sverkhkriticheskikh parametrov [Influence of water mode of operation of supercritical steam turbines]. Teploenergetika, 1977, no. 2, pp. 40–43.
  7. Sakharov, A.M. Teplovye ispytaniya parovykh turbin [Thermal tests of steam turbines]. Moscow: Energoatomizdat, 1990. 238 p.
  8. Klyuev, V.V., Parkhomenko, P.P., Abramchuk, V.E. Tekhnicheskie sredstva diagnostirovaniya [Diagnostic hardware]. Moscow: Mashinostroenie, 1989. 672 p.
  9. Perminov, I.A., Orlik, V.G. Diagnostika tekhnicheskogo sostoyaniya protochnoy chasti TsVD i TsSD po ekspluatatsionnym izmereniyam davleniy i temperatur para v turbine [Diagnostics of the technical condition of the HPC and IPC flow part by operational measurements of pressure and temperature of steam in the turbine]. Elektricheskie stantsii, 2003, no. 6, pp. 38–41.
  10. Bozhko, V.V., Kovalenko, A.N., Lyapunov, V.M., Khomenko, L.A. Ekspluatatsionnaya diagnostika teplovogo sostoyaniya i ekonomichnosti parovykh turbin TES i AES [Operational diagnostics of thermal state and efficiency of steam turbines of TPP and NPP]. Teploenergetika, 2016, no. 5, pp. 45–50.
  11. Kovalev, I.A., Rakovskiy, V.G., Isakov, N.Yu., Sandovskiy, A.V. Razvitie i sovershenstvovanie sistem ekspluatatsionnoy diagnostiki proizvodstva OAO NPO TsKTI turboagregatov TES i AES [Development and improvement of the operating diagnostics systems of NPO CKTI works for turbine units of TPP and NPP]. Teploenergetika, 2016, no. 3, pp. 15–20.
  12. Gvozdev, V.M., Polyakov, A.I., Isakov, N.Yu., Mandryka, E.S. Opyt ekspluatatsii sistemy diagnostiki rabochikh lopatok TsND turbiny K-210 st. №2 Shaturskoy GRES-5 [Experience in operation of the diagnostics system for LPC turbine rotor blades K-210 st. No. 2 of Shaturskaya GRES-5]. Elektricheskie stantsii, 2001, no. 8, pp. 16–18.
  13. Khaimov, V.A. Opticheskaya diagnostika protochnoy chasti parovykh turbin [Optical diagnostics of the steam turbine flow path]. Elektricheskie stantsii, 2014, no. 2, pp. 7–15.
  14. Don, E.A., Taraday, D.V., Buglaev, K.E. Sistema diagnostiki temperaturnykh rasshireniy turboagregatov [Turbine unit temperature expansion diagnostics system]. Elektricheskie stantsii, 2012, no. 9, pp. 42–47.
  15. Buglaev, K.E., Don, E.A., Taraday, D.V. Primenenie sistemy SDART dlya diagnostiki temperaturnykh rasshireniy turboagregata [Application of SDART system for diagnostics of turbine unit temperature expansions]. Teploenergetika, 2005, no. 6, pp. 23–28.
  16. Biyalt, M.A., Chernenok, P.E., Bochkarev, E.V., Ur'ev, E.V. Aktual'nost' i problema realizatsii monitoringa krutil'nykh kolebaniy valoprovodov turboagregatov na elektrostantsiyakh [Relevance and problem of implementation of torsional oscillations monitoring of turbine unit shaft lines at power plants]. Elektricheskie stantsii, 2013, no. 8, pp. 50–57.
  17. Kalashnikov, A.A. Nekotorye voprosy razvitiya avtomaticheskoy diagnostiki sistem regulirovaniya turboagregatov [Some issues of development of automatic diagnostics of turbine control systems]. Teploenergetika, 1988, no. 10, pp. 25–28.
  18. Belikov, N.V., Zanimonets, Yu.M., Kozlov, E.G. Avtomatizirovannaya sistema dlya ispytaniy, kontrolya i diagnostiki parovykh turbin vsekh tipov [Automated system for testing, monitoring and diagnostics of steam turbines of all types]. Teploenergetika, 2000, no. 11, pp. 39–41.
  19. Kovalev, I.A., Isakov, N.Yu., Bozhkov, V.V. Kompleksnaya diagnostika kak neobkhodimoe sredstvo obespecheniya ekspluatatsionnoy nadezhnosti turboagregata [Comprehensive diagnostics as a necessary tool for ensuring operational reliability of turbine units]. Teploenergetika, 2012, no. 3, pp. 12–17.
  20. Boychenko, S.N., Kostyukov, V.N., Kuz'minykh, N.Yu., Kumenko, A.I., Timin, A.V. Razrabotka elementov sistemy monitoringa tekhnicheskogo sostoyaniya turboagregatov TES i AES [Development of elements of the condition monitoring system of turbine units of TPP and NPP]. Teploenergetika, 2017, no. 8, pp. 14–23.
  21. Korshikova, A.A., Idzon, O.M. Model' rannego obnaruzheniya avariynykh situatsiy na oborudovanii elektrostantsiy na osnove metoda naimen'shikh potentsialov [Model of early detection of emergencies on power plant equipment based on the least potential method]. Teploenergetika, 2021, no. 10, pp. 37–44.
  22. Naumov, S.A., Krymskiy, A.V., Lipatov, M.A., Skrabatun, D.N. Opyt ispolʹzovaniya udalennogo dostupa i predskazatelʹnoy analitiki sostoyaniya energeticheskogo oborudovaniya [Experience in use of remote access and predictive analytics of the state of power equipment]. Teploenergetika, 2018, no. 4, pp. 21–33.
  23. Nemirovich-Skrabatun, D.N., Persyaev, A.A. Opyt sozdaniya sistemy avtomaticheskogo raspoznavaniya anomaliy v rabote energeticheskogo oborudovaniya [Experience in creating an automatic anomaly recognition system in the operation of power equipment]. Elektricheskie stantsii, 2022, no. 1, pp. 49–56.
  24. Bubnov, K.N., Zhukov, V.P., Gorshenin, S.D., Barochkin, E.V. Matematicheskaya model' raskhodnykh kharakteristik paroturbinnykh ustanovok [Mathematical model of flow characteristics of steam turbine plant]. Vestnik IGEU, 2022, issue 5, pp. 72–79.
  25. Zhukov, V.P., Barochkin, E.V. Sistemnyy analiz energeticheskikh teplomassoobmennykh ustanovok [System analysis of energy heat and mass exchange plants]. Ivanovo, 2009. 176 p.
  26. Birger, I.A. Tekhnicheskaya diagnostika [Technical diagnostics]. Moscow: Mashinostroenie, 1978. 239 p.
  27. Amosov, A.A., Dubinskiy, Yu.A., Kopchenova, N.V. Vychislitel'nye metody dlya inzhenerov [Computational methods for engineers]. Moscow: Vysshaya shkola, 1994. 544 p.
  28. Gmurman, V.E. Teoriya veroyatnostey i matematicheskaya statistika [Probability theory and mathematical statistics]. Moscow: Vysshaya shkola, 2003. 479 р.
Key words in Russian: 
теплофикационная паровая турбина, диагностика паровой турбины, метод непрерывного мониторинга, математическая модель расходной характеристики отсеков паровой турбины, предиктивная аналитика
Key words in English: 
cogeneration steam turbine, steam turbine diagnostics, continuous monitoring method, mathematical model of flow characteristics of steam turbine compartments, predictive analytics
The DOI index: 
10.17588/2072-2672.2023.4.085-093
Downloads count: 
32