1. Vladimirova, L.V., Ovsyannikov, D.A., Rubtsova, I.D. Metody Monte-Karlo v prikladnykh zadachakh [Monte Carlo methods in applied problems]. Saint-Petersburg: Izdatel'stvo VVM, 2015. 166 p.
2. Kashnikova, A.P. Metod Monte-Karlo v zadachakh modelirovaniya protsessov i system [Monte Carlo method in the problems of modeling processes and systems]. Modern Science, 2021, no. 1-2, pp. 358–362.
3. Jorge, B., Rolando, F.B., Carlo, A.B., Nora, N. The renewable energy policy Paradox. Renewable and Sustainable Energy Reviews, 2018, vol. 82 (Part 1), pp. 1–5. https://doi.org/10.1016/ j.rser.2017.09.002.
4. Alhajj Hassan, F., Sidorov, A. Study of power system stability: Matlab program processing data from Zahrani power plant (Beirut, Lebanon). E3S Web of Conferences, 2019, vol. 1, no. 2, pp. 60–70. DOI: 10.28991/HEF-2020-01-02-02.
5. Almohammed, O., Philippova, F., Alhajj Hassan, F., Timerbaev, N., Fomin, A. Practical study on heat pump enhancement by the solar energy. E3S Web of Conferences, 2021, issue 288. https://doi.org/10.1051/e3sconf/202128801069.
6. Mestnikov, N., Hassan, F.A., Alzakkar, A. Study of operation of combined power supply system based on renewable energy in territory of far east of Russia. International conference on industrial engineering, applications and manufacturing (ICIEAM), 2021, pp. 114–118. https://doi.org/10.1109/ICIEAM51226.2021.9446439.
7. Filippova, T.A., Rusina, A.G., Dronova, Yu.V. Modeli i metody prognozirovaniya elektroenergii i moshchnosti pri upravlenii rezhimami elektroenergeticheskikh sistem [Models and methods for forecasting electricity and power in the control of modes of electric power systems]. Novosibirsk: Izdatel'stvo NGTU, 2009. 368 p.
8. Alkhadzh Khassan, F., Alali, Sh., Gaynullina, L.R. Povyshenie effektivnosti vetrovykh elektrostantsiy [Increasing the efficiency of wind power plants]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2022, no. 26(2), pp. 217–227. https://doi.org/10.21285/1814-3520-2022-2-217-227.
9. Coquilla, R.V., Obermeier, J. Calibration Uncertainty Comparisons Between Various Anemometers. In American Wind Energy Association AWEA, 2008.
10. Ismaiel, A., Yoshida, S. Aeroelastic analysis for side-booms of a coplanar twin-rotor wind turbine. International Review of Aerospace Engineering, 2020, vol. 13(4), pp. 135–140. https://doi.org/10.15866/irease. v13i4.18355
11. Alhajj Hassan, F. Multi-criteria Approach and Wind Farm Site Selection Analysis for Improving Power Efficiency. Journal of Human, Earth, and Future, 2020, vol. 1(2), pp. 60–70. DOI: 10.28991/HEF-2020-01-02-02.
12. Alhajj Hassan, F., Mahmoud, M., Almohammed, O.A.M. Analysis of the Generated Output Energy by Different Types of Wind Turbines. Journal of Human, Earth, and Future, 2020, vol. 1(4), pp. 181–187. DOI: 10.28991/HEF-2020-01-04-03.
13. Samokhvalov, D.V., Jaber, A.I., Almahturi, F.S. Maximum Power Point Tracking of a Wind-Energy Conversion System by Vector Control of a Permanent Magnet Synchronous Generator. Russ. Electr. Engin., 2021, vol. 92, pp. 163–168.
14. Il'ichev, V.Yu., Shevelev, D.V. Raschet kharakteristik moshchnosti vetryanykh turbogeneratorov s primeneniem programmnogo modulya Windpowerlib [The calculation of power characteristics of wind turbine generators using the software module Windpowerlib]. Izvestiya MGTU «MAMI», 2021, no. 1(47), pp. 23–31.
15. Vozobnovlyaemye istochniki energii i smyagchenie vozdeystviy na izmenenie klimata [Renewable Energy and Climate Change Mitigation]. Spetsial'nyy doklad mezhpravitel'stvennoy gruppy ekspertov po izmeneniyu klimata [Special Report of the Intergovernmental Panel on Climate Change]. Zheneva, 2011. 215 p.