Русская версия English version

Calculation of the portion of air in drying units used for cold regeneration of the adsorbent

V.N. Didenko, D.A. Khvorenkov, I.I. Fakhraziev

Vestnik IGEU, 2024 issue 6, pp. 39—50

Download PDF

Abstract in English: 

Background. The process of cold regeneration of the adsorbents in drying units is carried out by a portion of already dried air without heating it. It simplifies the design, reduces the cost, but reduces the productivity of the installation. At hot temperature and atmospheric air humidity, this part (portion) of the air can be unacceptably large, therefore it is important to determine its value before the design work starts. The use of an I-d humid air diagram is limited by the errors of graphical constructions. Thus, the development of a method for pre-design calculation of the portion of dehumidified air for cold regeneration of the adsorbent is an urgent task.

Materials and methods. The development of a method for engineering calculations of the real process of cold regeneration of an adsorbent is possible only with simplifying assumptions that make it possible to develop a method suitable for pre-design engineering calculations. The study is carried out using a method based on the theory of “wet-bulb temperature”. It considers heat and mass transfer processes in a local boundary layer of an evaporating water film washed by a plane-parallel and stationary flow of unsaturated air.

Results. The authors have conducted a detailed study of the real processes of heat and mass transfer during cold regeneration of granular adsorbent with dried air. The calculation of the change in moisture content and air temperature in two layers of adsorbent has been performed under the assumption that the temperature of the wet-bulb thermometer is the same in all layers of the adsorbent during the entire cold regeneration phase. The temperature and relative humidity of the air at the end of the regeneration phase have been calculated based on the initial state of the dried air used for regeneration of the adsorbent. The developed algorithm of the method is illustrated by a numerical example.

Сonclusions. The results obtained using the presented methodology allow us to conclude that the model is adequate and that the research goal has been achieved. The reliability of the results is evident due to the application of basic physically easy to understand thermodynamic patterns. The technique can be used when performing pre-design calculations of air dehumidification systems of compressor stations, which have certain requirements for the moisture content of compressed air.

References in English: 

1. Avtonomova, I.V. Kompressornye stantsii i ustanovki. Сh. 2. Metody ochistki gaza na kompressornykh stantsiyakh [Compressor stations and installations. Part 2. Methods of gas purification at compressor stations]. Moscow: Izdatel'stvo MGTU im. N.E. Baumana, 2011.

2. Vetoshkin, A.G. Protsessy i apparaty gazoochistki [Gas purification processes and apparatus]. Penza: Izdatel'stvo Penzenskogo gosudarstvennogo universiteta, 2006. 228 p.

3. Tarabonov, M.G. Konditsionirovanie vozdukha. Ch. 1 [Air conditioning. Part 1]. Moscow: Avok-press, 2015.

4. Vagin, E.V., Petukhov, S.S. Adsorbtsionnye metody ochistki vozdukha i produktov ego razdeleniya [Adsorption methods for purifying air and its separation products]. Khimicheskoe i neftegazovoe mashinostroenie, 1984, no. 7, p. 18.

5. Kel'tsev, N.V. Osnovy adsorbtsionnoy tekhniki [Basics of adsorption technology]. Moscow: Khimiya, 1984.

6. Kozlov, V.V., Shadrin, V.S., Rakhmanov, M.A. Metod i programma rascheta protsessov teplo- i massoperenosa pri adsorbtsionnom osushenii szhatogo vozdukha [Method and program for calculating heat and mass transfer processes during adsorption drying of compressed air]. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya, 2017, no. 3.

7. Mozgovoy, S.V. Issledovanie protsessov teplo- i massoobmena pri ochistke gazovykh smesey v adsorbtsionnykh ustanovkakh. Diss. kand. fiz.-mat. nauk [Study of heat and mass transfer processes during the purification of gas mixtures in adsorption units. Cand. Phys.-Math. Sci. Diss.]. Moscow, 2001. 133 p.

8. Matveykin, V.G., Putin, S.B., Skvortsov, S.A., Tolstoshein, S.S. Matematicheskoe modelirovanie protsessa adsorbtsionnogo kontsentrirovaniya uglekislogo gaza v sisteme zhizneobespecheniya uslovno-zamknutogo ob"ema [Mathematical modeling of the process of adsorption concentration of carbon dioxide in the life support system of a conditionally closed volume]. Voprosy sovremennoy nauki i praktiki. Universitet im. V.I. Vernadskogo, 2011, no. 3(34), pp. 64–71.

9. Kheyfets, L.I., Predtechenskaya, D.M., Pavlov, Yu.V., Okunev, B.N. Modelirovanie dinamicheskikh effektov v sloyakh adsorbentov. Prostoy metod otsenki teploprovodnosti sloya kompozitnogo adsorbenta vody (CaCl2, impregnirovannyy v pory silikagel'noy matritsy) [Modeling of dynamic effects in adsorbent layers. A simple method for assessing the thermal conductivity of a layer of composite water adsorbent (CaCl2, impregnated into the pores of a silica gel matrix)]. Vestnik Moskovskogo universiteta. Seriya: Khimiya, 2006, vol. 47, no. 4, pp. 274–277.

10. Bogoslavskaya, N.S., Ustinov, E.A., Seballo, A.A. Dinamika desorbtsii vody iz tseolita nagretym potokom inertnogo gaza [Dynamics of water desorption from zeolite by a heated inert gas flow]. ZhPKh, 1987, no. 12, pp. 2676–2680.

11. Zhiber, A.V., Tsirel'man, N.M. Tochnoe reshenie zadachi dinamiki adsorbtsii-desorbtsii s nelineynoy izotermoy sorbtsii [Exact solution to the problem of adsorption-desorption dynamics with a nonlinear sorption isotherm]. Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1989, no. 5, pp. 107–112.

12. Zolotarev, P.P. Dinamika adsorbtsii odnogo veshchestva v nepodvizhnom sloe zeren adsorbenta [Dynamics of adsorption of one substance in a fixed layer of adsorbent grains]. Fizicheskaya adsorbtsiya v mikroporistykh adsorbentakh [Physical adsorption in microporous adsorbents]. Moscow: Nauka, 1979, pp. 59–66.

13. Zolotarev, P.P., Dubinin, M.M. Ob uravneniyakh, opisyvayushchikh vnutrennyuyu diffuziyu v granulakh adsorbentov [On the equations describing internal diffusion in adsorbent granules]. DAN SSSR, 1973, vol. 210, no. 1, pp. 136–139.

14. Ustinov, E.A., Polyakov, N.S., Nikolaev, K.M., Dubinin, M.M. Modelirovanie dinamiki adsorbtsii parov v nepodvizhnykh sloyakh mikroporistykh adsorbentov i raschet osnovnykh kharakteristik kinetiki adsorbtsii [Modeling the dynamics of vapor adsorption in fixed layers of microporous adsorbents and calculating the main characteristics of adsorption kinetics]. Izvestiya AN SSSR. Seriya: Khimiya, 1981, pp. 49–55.

15. Seballo, A.A., Shibaev, V.A., Ivanova, O.L., Rybkina, L.A., Plachenov, T.G. Modelirovanie sorbtsionnykh protsessov razdeleniya smesey [Modeling of sorption processes for separation of mixtures]. ZhPKh, 1988, vol. 61, no.10, pp. 2244–2252.

16. Novikov, B.C. Zadachi i metody teorii perenosa (obzor) [Problems and methods of transfer theory (review)]. Promyshlennaya teplotekhnika, 1989, vol. 11, no. 4, pp. 11–23.

17. Rudneva, E.S., Inshakova, A.S. Termodinamicheskiy analiz protsessov osusheniya szhatogo vozdukha s kholodnoy i goryachey regeneratsiey adsorbenta [Thermodynamic analysis of compressed air drying processes with cold and hot regeneration of the adsorbent]. Politekhnicheskiy molodezhnyy zhurnal № 08. Moscow, 2019.

18. Lukanin, V.N. Teplotekhnika [Heat engineering]. Moscow: Vysshaya shkola, 1999.

19. Shpakovskiy, R.P. Nekotorye zamechaniya k teorii temperatury «mokrogo» termometra [Some comments on the theory of “wet” thermometer temperature]. Problemy energetiki, 2015, no. 7–8.

20. Shpakovskiy, R.P. Teplomassoperenos pri isparenii v gazovyy potok [Heat and mass transfer during evaporation into a gas flow]. N. Novgorod: NGTU im. R.E. Alekseeva, 2013.

21. Lukashov, V.V. K opredeleniyu temperatury poverkhnosti isparyayushcheysya zhidkosti [To determine the surface temperature of an evaporating liquid]. Teoreticheskie osnovy khimicheskoy tekhnologii, 2003, vol. 37, no. 4, pp. 351.

22. Krischer, O. Die wissenschaftlichen Grundlagen der Trocknungstechnik. Berlin: Springer-Verlag, 1956.

Key words in Russian: 
влажный воздух, осушение воздуха, фаза адсорбции, холодная регенерация, метод расчета холодной регенерации адсорбента
Key words in English: 
humid air, air dehumidification, adsorption phase, cold regeneration, method of calculation of cold regeneration of adsorbent
The DOI index: 
10.17588/2072-2672.2024.6.039-050
Downloads count: 
7