Русская версия English version

Development of geometric model of the main building of Ivanovo CHPP-2 in Ansys PVK

V.V. Bukhmirov, E.N. Bushuev, I.I. Svetushkov, E.N. Temlyantseva, D.A. Dolinin

Vestnik IGEU, 2024 issue 4, pp. 15—21

Download PDF

Abstract in English: 

Background. Modeling of the heat-air regime in the main body of the TPP in the scientific and technical literature is given insufficient attention. To simulate the heat-air regime in the main building of a thermal power plant, it is necessary to develop a geometric model of the boiler-turbine shop. A mathematical model of the heat-air regime in the main building of the TPP will allow us to develop energy-saving measures and improve the microclimate in the premises of the plant.

Materials and methods. The study has been carried out using mathematical modeling methods based on the DesignModeler graphic editor in ANSYS software.

Results. A geometric model of the boiler-turbine shop of Ivanovo combined heat and power plant-2 (CHPP-2) has been developed. It allows us to develop a mathematical model of heat and mass transfer in the air space of the main building of the plant.

Conclusions. The three-dimensional geometric model of Ivanovo CHPP-2 is the first stage of the development of an integrated mathematical model of the heat-air regime of the main building. Its aim is to evaluate measures that reduce consumption of thermal and electrical energy for the in-house needs.

References in English: 

1.  Lysev, V.I., Shilin, A.S. Napravleniya povysheniya energoeffektivnosti zdaniy i sooruzheniy [Prospects to improve energy efficiency of buildings and structures]. Nauchnyy zhurnal NIU ITMO. Seriya: Kholodil'naya tekhnika i konditsionirovanie, 2017, no. 2/3, pp. 18–25.

2.  Sokolov, M. Energoemkost' ekonomiki Rossii i osnovnye napravleniya po ee sokrashcheniyu [Energy intensity of the Russian economy and main directions for its reduction]. Energeticheskaya politika, 2023, no. 7(186), pp. 46–67.

3.  Getiya, S.I., Kochetov, O.S., Stareeva, M.O. Raschet optimal'nykh parametrov mikroklimata rabochey zony [Calculation of optimal parameters of the microclimate of the working area]. Vestnik MGUPI, 2013, no. 5, pp. 84–92.

4.  Panaiotti, E.A., Surzhikov, D.V. Kompleksnaya otsenka usloviy truda i riska dlya zdorov'ya rabotayushchikh v osnovnykh tsekhakh teplovykh elektrostantsiy [Comprehensive assessment of working conditions and health risks for workers in the main shops of thermal power plants]. Sibirskiy nauchnyy meditsinskiy zhurnal, 2007, no. 1(120), pp. 56–62.

5.  Tabunshchikov, Yu.A. Matematicheskoe modelirovanie – universal'nyy instrument upravleniya teploenergopotrebleniem zdaniya [Mathematical modeling as a universal tool to manage heat and energy consumption of a building]. Ventilyatsiya. Otoplenie. Konditsionirovanie: AVOK, 2018, no. 6, pp. 26–30.

6.  Bukhmirov, V.V., Rakutina, D.V., Gil'mutdinov, A.Yu. Sovershenstvovanie sistemy teplovozdukhasnabzheniya glavnogo korpusa TES na osnove matematicheskogo modelirovaniya [Improvement of heat and air supply system of the main building of the thermal power plant based on mathematical modeling]. Vestnik IGEU, 2011, issue 1, pp. 4–7.

7.  Prorokova, M.V. Povyshenie effektivnosti energosberegayushchikh meropriyatiy s uchetom komfortnosti mikroklimata. Diss. … kand. tekhn. nauk [Improvement of efficiency of energy-saving measures considering the comfort of the microclimate. Cand. tech. sci. diss.]. Ivanovo, 2017. 202 p.

8.  Deniskhina, D.M. Otsenka teplovogo komforta v pomeshcheniyakh na osnove analiza rezul'tatov matematicheskogo modelirovaniya [Assessment of thermal comfort in premises based on analysis of mathematical modeling results]. Vestnik TGASU, 2015, no. 3, pp. 184–192.

9.  Bukhmirov, V.V. Teplomassoobmen. V 2 t., t. 1 [Heat and mass transfer. In 2 vols., vol. 1]. Ivanovo, 2023. 364 p.

10.   Gorbunov, V.A. Modelirovanie teploobmena v konechno-elementnom pakete FEMLAB [Heat transfer modeling in FEMLAB finite element package software]. Ivanovo, 2008. 216 p.

Key words in Russian: 
котлотурбинный цех, тепловоздушный режим, математическая модель микроклимата, условия однозначности для решения дифференциальных уравнений тепломассообмена, геометрическая модель объекта
Key words in English: 
boiler-turbine shop, heat-air regime, mathematical model of microclimate, single-valued condition to solve differential equations of heat and mass transfer, geometric model of the object
The DOI index: 
10.17588/2072-2672.2024.4.015-021
Downloads count: 
39