Русская версия English version

Analysis of the effectiveness of methods for ensuring electromagnetic compatibility of electric drives with active rectifiers in real production conditions

A.A. Nikolaev, I.G. Gilemov, M.V. Bulanov, V.S. Ivekeev

Vestnik IGEU, 2024 issue 6, pp. 67—74

Download PDF

Abstract in English: 

Background. A significant degradation of voltage quality of the in-plant network is possible during operation of electric drives based on a frequency converter with an active rectifier, due to the superposition of high-frequency harmonics of the electric drive current on the resonance region of the network frequency response. Due to the active introduction of such electric drives recently at metallurgical plants, various methods are implemented to ensure electromagnetic compatibility of the frequency converter and the power supply network. The purpose of this study is to analyze the efficiency of methods to ensure electromagnetic compatibility of electric drives and active rectifiers under industrial production.

Materials and methods. The effectiveness of various methods to improve the power quality in the power distribution system of the enterprise has been evaluated using the developed complex simulation model of the power supply system and electric drives of the hot strip mill. It considers the parameters of the main elements of the electrical complex, as well as the data of experimental studies obtained using the Fluke 435 and ELSPEC G4430 power quality analyzers.

Results. Two methods of ensuring electromagnetic compatibility of the frequency converters with active rectifiers are considered. The use of improved algorithms of the active rectifier PWM allows us to reduce the value of the total harmonics distortions at the point of common coupling THDU by 40,1 % to 8,08 %. The installation of a specialized passive filter 9000 kVAr allows us to achieve a significantly greater technical effect (THDU = 0,42 %).

Conclusions. The obtained results show that for the enterprise under consideration the optimal option for ensuring the required power quality is the use of specialized passive filter. However, this option will require significant capital and operating costs. The adequacy of the simulation model has been previously confirmed by experimental data and previous studies.

References in English: 

1. Orcajo, G.A., Diez, J.R., Rodriguez, J.M.C., Norniella, J.G. Retrofit of a Hot Rolling Mill Plant with Three-Level Active Front End Drives. IEEE Transactions on Industry Applications, 2018 May–June, vol. 54, no. 3, pp. 2964–2974. DOI: 10.1109/TIA.2018.2808159.

2. Maklakov, A.S. Imitatsionnoe modelirovanie glavnogo elektroprivoda prokatnoy kleti tolstolistovogo stana 5000 [Simulation of the main electric drive of the plate mill rolling stand]. Mashinostroenie: setevoy elektronnyy nauchnyy zhurnal, 2014, no. 3, pp. 16–25.

3. Pontt, J., Alzamora, G., Huerta, R., Becker, N. Resonances in a High-Power Active-Front-End Rectifier System. IEEE Trans. Ind. Electron., April 2005, vol. 52, no. 2, pp. 482–488.

4. O'Brien, K., Teichmann, R., Bernet, S. Active rectifier for medium voltage drive systems. Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, 2001, pp. 557–562.

5. Franquelo, L.G., Nápoles, J. A Flexible Selective Harmonic Mitigation Technique to Meet Grid Codes in Three-Level PWM Converters. IEEE Transactions on Industrial Electronics, 2007 December, vol. 54, no. 6.

6. Jing, T., Maklakov, A., Radionov, A. Two Selective Harmonic Control Techniques Applied in 10 kV Grid with Three-Level NPC Inverter. 2019 IEEE Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI). Magnitogorsk, Russia, 2019, pp. 75–79. DOI: 10.1109/PEAMI.2019.8915413.

7. Nikolaev, A.A., Gilemov, I.G., Bulanov, M.V., Afanas'ev, M.Yu., Shakhbieva, K.A., Laptova, V.A. Obespechenie elektromagnitnoy sovmestimosti moshchnykh elektroprivodov chetyrekhklet'evogo stana PPP KhP CherMK PAO «Severstal'» s pitayushchey set'yu 10 kV [Protection of the electromagnetic coating of electric drives of the four-stand mill PPP KHP CherMK PJSC “Severstal” with a 10 kV supply network]. Aktual'nye problemy sovremennoy nauki, tekhniki i obrazovaniya, 2021, vol. 12, no. 1, pp. 65–74.

8. Nikolaev, A.A., Gilemov, I.G., Lin'kov, S.A., Svetlakov, M.S. Eksperimental'nye issledovaniya kachestva elektroenergii v seti 34,5 kV metallurgicheskogo zavoda ZAO «MMK Metalurji» [Experimental Studies of Power Quality in the 34,5 kV Network at MMK “Metalurji”]. Elektrotekhnicheskie sistemy i kompleksy, 2022, no. 3(56), pp. 44–53. DOI: 10.18503/2311-8318-2022-3(56)-44-53.

9. Moeini, A., Zhao, H., Wang, S. A current reference based selective harmonic current mitigation PWM technique to improve the performance of cascaded H-bridge multilevel active rectifiers. IEEE Trans. Ind. Electronics, 2018, vol. 65, pp. 727–737.

10. Zhou, K., Yang, Y., Blaabjerg, F., Wang, D. Optimal selective harmonic control for power harmonics mitigation. IEEE Transactions on Industrial Electronics, 2015, vol. 62, no. 2, pp. 1220–1230.

11. Nikolaev, A.A., Afanas'ev, M.Yu., Gilemov, I.G., Bulanov, M.V. Povyshenie kachestva elektroenergii v sistemakh elektrosnabzheniya prokatnykh stanov s ispol'zovaniem preobrazovateley chastoty s aktivnymi vypryamitelyami za schet primeneniya spetsializirovannykh passivnykh fil'trov [Improvement of power quality in power supply systems of rolling mills using frequency converters with active rectifiers due to use of specialized passive filters]. Vestnik IGEU, 2023, issue 1, pp. 41–52. DOI: 10.17588/2072-2672.2023.1.041-052.

Key words in Russian: 
электромагнитная совместимость, преобразователь частоты, активный выпрямитель, широтно-импульсная модуляция, резонанс токов, специализированный пассивный фильтр
Key words in English: 
electromagnetic compatibility, frequency converter, active rectifier, pulse wide modulation, current resonance, specialized passive filter
The DOI index: 
10.17588/2072-2672.2024.6.067-074
Downloads count: 
8