Русская версия English version

Simulation modeling of ozone generator

S.P. Bobkov, I.A. Astrakhantseva, V.P. Zhukov, E.S. Bobkova

Vestnik IGEU, 2024 issue 6, pp. 81—90

Download PDF

Abstract in English: 

Background. Industrial combustion of fuel leads to pollution of the environment with flue gases containing oxides of sulfur, carbon, and nitrogen, which belong to toxic substances. One of the methods of neutralizing exhaust gases is their chemical purification using ozone, which allows accelerating the oxidation reactions of oxides to easily recyclable compounds. One of the industrial methods to obtain ozone is its generation (synthesis) from oxygen-containing mixtures in installations in which high-voltage electrical discharges are used. In this regard, improving the methods of calculation and design of ozone generators is an urgent task.

Materials and methods. The authors have used simulation models based on the Monte Carlo method, which allows random processes to be described using both deterministic and probabilistic rules.

Results. A simulation model of an ozone generator in a barrier electric discharge has been developed. A general methodology to develop a simulation model of an ozone generator has been proposed. A modeling algorithm has been developed and a description of individual stages of the process has been considered. The adequacy of the simulation model description of physical experiment data has been demonstrated.

Conclusions. The obtained data on the non-uniform distribution of active particles in the working zone of the device provides an opportunity to improve the ozone generator designs. The application of a discrete stochastic approach is a promising direction of research, due to its possible computational implementation using modern computer technology within the framework of parallel computing technology.

References in English: 

1. Lukanin, A.V. Ochistka gazovozdushnykh vybrosov [Cleaning of gas-air emissions]. Moscow: Infra-M, 2022. 200 p.

2. Vostrikova, M.A., Shkoda, V.V., Kashin, Ya.M. Obzor metodov ochistki gazovykh vybrosov energeticheskikh ustanovok ot oksidov sery i azota [Review of methods for cleaning gas emissions from power plants from sulfur and nitrogen oxides]. Innovatsionnaya nauka, 2015, no. 8, pp. 31–35.

3. Pronin, V.A., Mamchenko, V.O., Dolgovskaya, O.V., Tsvetkov, V.A. Ochistka i dezodoratsiya gazovozdushnykh vybrosov [Cleaning and deodorization of gas-air emissions]. Saint-Petersburg: ITMO University, 2022. 155 p.

4. Lunin, V.V., Samoylovich, V.G., Tkachenko, S.N., Tkachenko, I.S. Teoriya i praktika polucheniya i primeneniya ozona [Theory and practice of obtaining and using ozone]. Moscow: Izdatel'stvo Moskovskogo universiteta, 2016. 416 p.

5. Silkin, E.M. Sintez ozona v elektricheskikh razryadakh i povyshenie ego effektivnosti [Synthesis of ozone in electrical discharges and increasing its efficiency]. Komponenty i tekhnologii, 2008, no. 6, pp. 136–143.

6. Gushchin, A.A., Grinevich, V.I., Izvekova, T.V., Ivantsova, N.A. Otsenka effektivnosti raboty plazmo-khimicheskikh ochistnykh ustroystv metodom biotestirovaniya [Assessing the efficiency of plasmachemical treatment devices using biotesting]. Bezopasnost' v tekhnosfere, 2012, vol. 37, no. 4, pp. 47–54.

7. Samoylovich, V.G., Gibalov, V.I., Kozlov, K.V. Fizicheskaya khimiya bar'ernogo razryada [Physical chemistry of barrier discharge]. Moscow: Izdatel'stvo Moskovskogo universiteta, 1989. 176 p.

8. Zhilin, Yu.N., Zarubina, A.N., Oliferenko, G.L., Ivankin, A.N. Inzhenernaya khimiya. Khimicheskie reaktory [Engineering chemistry. Chemical reactors]. Moscow: FGBOU VO MGUL, 2016. 140 p.

9. Lunin, V.V., Popovich, M.P., Tkachenko, S.N. Fizicheskaya khimiya ozona [Physical chemistry of ozone]. Moscow: MAKS Press LLC, 2019. 540 p.

10. Gibalov V.I., Tkachenko I.S., Lunin V.V. Breakdowns and the formation of microdischarge channels in surface barrier discharges. Russian Journal of Physical Chemistry, 2008, no. 6, pp. 1020–1023.

11. Gumerov, A.M. Matematicheskoe modelirovanie khimiko-tekhnologicheskikh protsessov [Mathematical modeling of chemical-technological processes]. Saint-Petersburg: Lan', 2022. 176 p.

12. Maykov, V.P. Rasshirennaya versiya klassicheskoy termodinamiki – fizika diskretnogo prostranstva-vremeni [An extended version of classical thermodynamics – physics of discrete space-time]. Moscow: MGUIE, 1997. 160 p.

13. Zavarukhin, S.G. Matematicheskoe modelirovanie khimiko-tekhnologicheskikh protsessov i apparatov [Mathematical modeling of chemical technological processes and apparatus]. Novosibirsk: Izdatel'stvo NGTU, 2017. 86 p.

14. Zvonarev, S.V. Osnovy matematicheskogo modelirovaniya [Basics of mathematical modeling]. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta, 2019. 112 p.

15. Bobkov, S.P., Astrakhantseva, I.A. Ispol'zovanie veroyatnostnykh kletochnykh avtomatov dlya modelirovaniya techeniya zhidkosti [Using probabilistic cellular automata to simulate fluid flow]. Sovremennye naukoemkie tekhnologii. Regional'noe prilozhenie, 2022, no. 2(70), pp. 47–54.

16. Bobkov, S.P., Astrakhantseva, I.A. Primeneniye agentnogo podkhoda dlya modelirovaniya protsessov teploprovodnosti [Application of an agent-based approach to modeling heat conduction processes]. Vestnik IGEU, 2022, issue 2, pp. 58–66.

17. Bobkov, S.P., Astrakhantseva, I.A. Diskretnaya stokhasticheskaya model' gidrodinamiki potoka [Discrete stochastic model of flow hydrodynamics]. Modelirovanie sistem i protsessov, 2023, no. 2, pp. 7–14.

18. Saidia, L., Belasri, A., Baadj, S., Harrache, Z. Issledovanie fiziko-khimicheskikh svoystv impul'snogo razryada v smesi CO2 – O2 [Study of the physical and chemical properties of pulse discharge in a CO2 – O2 mixture]. Fizika plazmy, 2019, vol. 45, no. 5, pp. 465–480.

19. Bobkova, E.S. Razryad atmosfernogo davleniya kak istochnik aktivnykh chastits dlya ochistki vody ot organicheskikh pollyutantov [Atmospheric pressure discharge as a source of active particles for purifying water from organic pollutants]. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2014, vol. 57, no. 10, pp. 89–91.

20. Bobkova, E.S., Rybkin, V.V. Peculiarities of Energy Efficiency Comparison of Plasma Chemical Reactors for Water Purification from Organic Substances. Plasma Chem. Plasma Processing, 2015, vol. 35, no. 1, pр. 133–142.

21. Budanov, V.V., Lefedova, O.V. Khimicheskaya kinetika [Chemical kinetics]. Ivanovo, 2011. 177 p.

22. Efremov, G.I. Modelirovanie khimiko-tekhnologicheskikh protsessov [Modeling of chemical and technological processes]. Moscow: INFRA-M, 2021. 260 p.

Key words in Russian: 
имитационное моделирование, дискретные модели, случайные процессы, электросинтез озона
Key words in English: 
simulation modeling, discrete models, random processes, ozone electrosynthesis
The DOI index: 
10.17588/2072-2672.2024.6.081-090
Downloads count: 
9