Русская версия English version

Study of wind speed influence on non-uniformity of air flow distribution in tower cooling towers

M.D. Fomichev, V.P. Zhukov, M.V. Kozlova

Vestnik IGEU, 2024 issue 6, pp. 75—80

Download PDF

Abstract in English: 

Background. The shortage of sources of low-mineralized water in the areas of construction and operation of powerful power units of thermal power plants and nuclear power plants necessitates to increase the efficiency of circulating cooling systems. Under these conditions, water recycling systems with cooling towers play a key role, increasing efficiency of which by modeling and optimizing heat and mass transfer processes becomes an urgent task.

Materials and methods. Modeling of the movement of air flows in a cooling tower is carried out using a package in ANSYS Fluent. The water-cooling process, considering the found distribution of air velocities across the cross section of the cooling tower, is calculated within the framework of the matrix modeling methodology of multi-flow heat and mass transfer installations.

Results. As a result of the study, the air velocity field and the distribution of air flows across the cross section of the cooling tower at different wind speeds have been found. The influence of uneven air flows across the cross section on the efficiency of water cooling has been assessed. The ways and methods for leveling these unevennesses under different weather conditions have been proposed.

Conclusions. The developed combined model of the heat and mass transfer process in a cooling tower makes it possible to effectively solve the problem of choosing the optimal design and operating parameters of cooling system equipment under various weather conditions, as well as to diagnose the state of the recirculation cooling system.

References in English: 
  1. Kalatuzov, V.A., Pavlov, V.A. Raschet ogranicheniy elektricheskoy moshchnosti TETS, svyazannogo s rabotoy system tsirkulyatsionnogo vodosnabzheniya [Calculation of the limitations of the electric power of the CHP plant associated with the operation of circulating water supply systems]. Elektricheskie stantsii, 1987, no. 4, pp. 18–22.
  2. Kalatuzov, V.A. Povyshenie raspolagaemoy moshchnosti teplovykh elektrostantsiy s gradirnyami. Diss. … kand. tekhn. nauk [Increasing the available capacity of thermal power plants with cooling towers. Cand. tech. sci. diss.]. Ivanovo, 2003. 113 p.
  3. Laptev, A.G., Basharov, M.M., Lapteva, Е.A. Matematicheskie modeli i metody raschetov teplomassoobmennykh i separatsionnykh protsessov v dvukhfaznykh sredakh [Mathematical models and methods for calculating heat and mass transfer and separation processes in two-phase media]. Kazan: TNT, 2021. 288 p.
  4. Brodov, Yu.M., Savel'ev, R.Z. Kondensatsionnye ustanovki parovykh turbin [Condensing units of steam turbines: a textbook for universities]. Moscow: Energoatomizdat, 1994. 288 p.
  5. Ledukhovskiy, G.V., Pospelov, A.A. Energeticheskie kharakteristiki oborudovaniya TES [Energy characteristics of thermal power plant equipment]. Ivanovo, 2014. 232 p.
  6.  Ryzhkin, V.Ya. Teplovye elektricheskie stantsii [Thermal power plants]. Moscow: Energoatomizdat, 1987. 328 p.
  7. Isachenko, V.P. Teploobmen pri kondensatsii [Heat exchange during condensation]. Moscow: Energiya, 1977. 240 p.
  8. Martynenko, O.G. Spravochnik po teploobmennikam: v 2 t., t. 1 [Handbook of heat exchangers: in 2 vols., vol. 1]. Moscow: Energoatomizdat, 1987. 560 p.
  9. Zhukov, V.P., Barochkin, E.V. Sistemnyy analiz energeticheskikh teplomassoobmennykh ustanovok [System analysis of energy heat and mass exchange plants]. Ivanovo, 2009. 176 p.
  10. Fomichev, M.D., Zhukov, V.P. Raschetnyy analiz vliyaniya neravnomernosti raspredeleniya teplonositeley po secheniyu gradirni na temperaturu okhlazhdennoy vody [Calculation analysis of the influence of uneven distribution of coolants over the cross-section of a cooling tower on the temperature of chilled water]. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Sostoyanie i perspektivy razvitiya elektro- i teplotekhnologii» (XXII Benardosovskie chteniya), Ivanovo, 2023 [Proceedings of the International Scientific and Technical Conference “State and prospects for the development of electrical and heat technology” (XXII Benardos Readings), Ivanovo, 2023]. Ivanovo, 2023, pp. 392–395.
  11. Zhukov, V.P., Fomichev, M.D., Vinogradov, V.N., Barochkin, A.E., Belyakov, A.N. Modelirovanie i raschet protsessa teplomassoobmena v bashennykh gradirnyakh sistem oborotnogo okhlazhdeniya TES I AES [Modeling and calculation of process of heat and mass transfer in cooling towers of circulating cooling systems of TPP and NPP]. Vestnik IGEU, 2022, issue 3, pp. 57–63.
  12. Badriev, A.I., Vlasov, S.M., Chichirova, N.D. Analiz normal'nosti raspredeleniya potokov v bashennykh isparitel'nykh gradirnyakh [Analysis of the normality of flow distribution in evaporative cooling towers]. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta, 2021, vol. 13, no. 1(49), p. 236.
  13. Zhukov, V.P., Fomichev, M.D., Barochkin, E.V., Shuina, E.A., Shuvalov, C.I. Kombinirovannaya model' teplomassoobmena v bashennykh gradirnyakh [Combined model of heat and mass transfer in cooling towers]. Vestnik IGEU, 2023, issue 5, pp. 90–96.
  14. FLUENT Incorporated, FLUENT Users Guide Release 12, Lebanon. New Hampshire, USA, 2009.
  15. Razafindrakoto, E., Denis, C. N3S-AERO: a multidimensional model for numerical simulation of flows in cooling towers. The 11th IAHR Cooling Tower Symposium. Cottbus, Germany, 1998, pp. 1–12.
  16. Majumdar, A., Singhal, A., Spalding, D. Numerical modelling of wet cooling towers. Part 1: Mathematical and physical models. Journal of Heat Transfer, 1983, vol. 105, pp. 728–735.
  17. Majumdar, A., Singhal, A., Reilly, H., Bartz, J. Numerical modelling of wet cooling towers. Part 2: Application to natural and mechanical draft towers. Journal of Heat Transfer, 1983, vol. 105, pp. 736–743.
Key words in Russian: 
система охлаждения, башенная градирня, матричное моделирование, поле скоростей, тепломассообмен, многопоточный теплообменник
Key words in English: 
cooling system, cooling tower, matrix simulation, velocity field, heat and mass transfer, multiflow heat exchanger
The DOI index: 
10.17588/2072-2672.2024.6.075-080
Downloads count: 
11