Русская версия English version

Additional boundary conditions in heat conduction problems with coordinate variable initial condition

K.V. Trubitsyn, T.E. Gavrilova, E.V. Kotova, K.V. Kolotilkina, S.V. Zaitsev, V.A. Kudinov

Vestnik IGEU, 2023 issue 6, pp. 88—94

Download PDF

Abstract in English: 

Background. It is exceedingly difficult to obtain mathematically accurate analytical solutions of heat conduction problems with a variable initial condition. Known solutions of these problems are expressed by cumbersome functional series that converge poorly in the range of small values of time and space variables. Thus, to obtain simpler and more effective solutions of these problems is an urgent issue.

Materials and methods. The authors have used an additional required function and additional boundary conditions to obtain solutions of the problem. Application of the additional required function allows us to reduce the original partial differential equation to the integration of an ordinary differential equation. Additional boundary conditions are in such a form that their fulfillment using the resulting solution is equivalent to the fulfillment of the equation at the boundary points.

Results. The authors have developed a technique to obtain an analytical solution of the heat conduction problem under a linear change of the initial condition, based on an additional required function and additional boundary conditions. Solution of an ordinary differential equation with respect to the additional required function determines the eigenvalues. In classical methods these eigenvalues are found in the solution of the Sturm–Liouville boundary value problem. The authors have proposed another, simpler solution to determine eigenvalues. An accurate analytical solution of the heat conduction problem for an unbounded plate with a coordinate-variable initial condition is obtained.

Conclusions. The scientific and practical value of the proposed analytical solution is the development of an innovative approach to determine eigenvalues, as well as elimination of complex integrals when we solve the equation and initial conditions of the boundary value problem. It makes possible to simplify the use of the solution obtained in engineering applications.

References in English: 

1. Kartashov, E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in the theory of thermal conductivity of solids]. Moscow: Vysshaya shkola, 2001. 550 p.

2. Lykov, A.V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow: Vysshaya shkola, 1967. 600 p.

3. Belyaev, N.M., Ryadno, A.A. Metody nestatsionarnoy teploprovodnosti [Methods of non-stationary heat conduction]. Moscow: Vysshaya shkola, 1978. 328 p.

4. Bio, M. Variatsionnye printsipy v teorii teploobmena [Variational principles in the theory of heat transfer]. Moscow: Energiya, 1975. 208 p.

5. Glazunov, Yu.T. Variatsionnye metody [Variational methods]. Moscow; Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika»; Institut komp'yuternykh issledovaniy, 2006. 470 p.

6. Gudmen, T. Primenenie integral'nykh metodov v nelineynykh zadachakh nestatsionarnogo teploobmena [Application of integral methods in non-linear problems of non-stationary heat transfer]. Sbornik nauchnykh trudov «Problemy teploobmena» [Collection of scientific proceedings “Problems of heat transfer”]. Moscow: Atomizdat, 1967, pp. 41–96.

7. Kudinov, I.V., Eremin, A.V., Trubitsyn, K.V., Stefanyuk, E.V. Modeli termomekhaniki s konechnoy i beskonechnoy skorost'yu rasprostraneniya teploty [Models of thermomechanics with finite and infinite velocity of heat propagation]. Moscow: Prospekt, 2020. 244 p.

8. Kudinov, V.A., Averin, B.V., Stefanyuk, E.V., Nazarenko, S.A. Analiticheskie metody teploprovodnosti [Analytical methods of thermal conductivity]. Samara: SamGTU, 2004. 209 p.

9. Stefanyuk, E.V., Kudinov, V.A. Poluchenie priblizhennykh analiticheskikh resheniy pri rassoglasovanii nachal'nykh i granichnykh usloviy v zadachakh teorii teploprovodnosti [Obtaining approximate analytical solutions when the initial and boundary conditions are mismatched in problems of the theory of heat conduction]. Izvestiya vuzov. Matematika, 2010, no. 4, pp. 63–71.

10. Kudryashov, L.I., Men'shíkh, N.L. Priblizhennye resheniya nelineynykh zadach teploprovodnosti [Approximate solutions of nonlinear problems of heat conduction]. Moscow: Mashinostroenie, 1979. 232 p.

11. Kudinov, I.V., Kotova, E.V., Kudinov, V.A. Metod polucheniya analiticheskikh resheniy kraevykh zadach na osnove opredeleniya dopolnitel'nykh granichnykh usloviy i dopolnitel'nykh iskomykh funktsiy [A method for obtaining analytical solutions to boundary value problems based on the determination of additional boundary conditions and additional desired functions]. Sibirskiy zhurnal vychislitel'noy matematiki, 2019, vol. 22, no. 2, pp. 153–165.

12. Fedorov, F.M. Granichnyy metod resheniya prikladnykh zadach matematicheskoy fiziki [Boundary method for solving applied problems of mathematical physics]. Novosibirsk: Nauka, 2000. 220 p.

Key words in Russian: 
нестационарная теплопроводность, дополнительные граничные условия, дополнительная искомая функция, дифференциальное уравнение, аналитическое решение, метод наименьших квадратов
Key words in English: 
non-stationary heat conduction, additional boundary conditions, additional required function, differential equation, analytical solution, least squares method
The DOI index: 
10.17588/2072-2672.2023.6.088-094
Downloads count: 
26