1. Maklakov, A.S., Nikolaev, A.A., Lin'kov, S.A., Lisovskaya, T.A. Vozmozhnosti kompensatsii reaktivnoy moshchnosti v seti posredstvom vysokomoshchnogo rekuperativnogo elektroprivoda peremennogo toka [Reactive Power Compensation Using a High-Power Regenerative AC Drive]. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2022, vol. 18, no. 3–4, pp. 65–74.
2. Pontt, J.A., Rodríguez, J.R., Liendo, A., Newman, P., Holtz, J., San Martin, J.M. Network-Friendly Low-Switching-Frequency Multipulse High-Power Three-Level PWM Rectifier. IEEE Transactions on Industrial Electronics, April 2009, vol. 56, no. 4, pp. 1254–1262.
3. Nikolaev, A.A., Khramshin, T.R., Afanas'ev, M.Yu. Issledovanie rezonansnykh yavleniy v raspredelitel'nykh elektricheskikh setyakh srednego napryazheniya sistem vnutrizavodskogo elektrosnabzheniya promyshlennykh predpriyatiy [Study of Resonant Phenomens in Medium Voltage Distribution Networks of Industrial Power Supply Systems]. Mashinostroenie: setevoy elektronnyy nauchnyy zhurnal, 2017, vol. 5, no. 4, pp. 51–62.
4. Pontt, J., Alzamora, G., Huerta, R., Becker, N. Resonances in a High-Power Active-Front-End Rectifier System. IEEE Trans. Ind. Electron., April 2005, vol. 52, no. 2, pp. 482-488.
5. Nikolaev, A.A., Afanas'ev, M.Yu., Gilemov, I.G., Bulanov, M.V. Povyshenie kachestva elektroenergii v sistemakh elektrosnabzheniya prokatnykh stanov s ispol'zovaniem preobrazovateley chastoty s aktivnymi vypryamitelyami za schet primeneniya spetsializirovannykh passivnykh fil'trov [Improvement of power quality in power supply systems of rolling mills using frequency converters with active rectifiers due to use of specialized passive filters]. Vestnik IGEU, 2023, issue 1, pp. 41–52.
6. Nikolaev, A.A., Gilemov, I.G., Bulanov, M.V., Afanas'ev, M.Yu., Shakhbieva, K.A., Laptova, V.A. Obespechenie elektromagnitnoy sovmestimosti moshchnykh elektroprivodov chetyrekhklet'evogo stana PPP KhP CherMK PAO «Severstal'» s pitayushchey set'yu 10 kV [Protection of the electromagnetic coating of electric drives of the four-stand mill PPP KHP CherMK PJSC “Severstal” with a 10 kV supply network]. Aktual'nye problemy sovremennoy nauki, tekhniki i obrazovaniya, 2021, vol. 12, no. 1, pp. 65–74.
7. Nikolaev, A.A., Gilemov, I.G., Bulanov, M.V. Otsenka vliyaniya rezhimov raboty elektroprivodov prokatnogo stana s PCh-AV na kachestvo napryazheniya pitayushchey seti 10 kV [Assessment of influence of rolling mill FC-AR electric drive operation mode on 10 kV supply network voltage quality]. Vestnik IGEU, 2021, issue 5, pp. 41–50.
8. Nikolaev, A.A., Gilemov, I.G. The Dynamic Operation Investigation of an Active Rectifier Control System with IGCT-Thyristor Switching Angle Table Selection Function. Proceedings – 2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM 2022). Sochi, 2022, pp. 492–497.
9. Nikolaev, A.A., Maklakov, A.S., Bulanov, M.V., Gilemov, I.G., Denisevich, A.S., Afanas'ev, M.Yu. Current Electromagnetic Compatibility Problems of High-Power Industrial Electric Drives with Active Front-End Rectifiers Connected to a 6–35 kV Power Grid: A Comprehensive Overview. Energies, 2023, vol. 16, no. 1, p. 293.
10. Nikolaev, A.A., Bulanov, M.V., Afanas'ev, M.Yu., Denisevich, A.S. Razrabotka usovershenstvovannogo algoritma ShIM aktivnogo vypryamitelya s adaptatsiey k rezonansnym yavleniyam vo vnutrizavodskoy seti [Development of an advanced PWM algorithm for active rectifier with adaptation to current resonances in internal power supply system]. Vestnik IGEU, 2018, issue 6, pp. 47–56.
11. O'Brien, K., Teichmann, R., Bernet, S. Active rectifier for medium voltage drive systems. Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, 2001, pp. 557–562.
12. Celanovic, N., Boroyevich, D. A fast space-vector modulation algorithm for multilevel three-phase converters. IEEE Trans. Ind. Appl., Mar. 2001, vol. 37, no. 2, pp. 637–641.
13. Khramshin, T.R., Krubtsov, D.S., Kornilov, G.P. Matematicheskaya model' silovoy skhemy glavnykh elektroprivodov prokatnykh stanov [A Mathematical Model of the Power Circuit of Main Electric Drives of Rolling Mills]. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal, 2014, vol. 1, no. 1, pp. 3–7.
14. Khramshin, T.R., Khramshin, R.R., Kornilov, G.P. Raschet elektromagnitnykh protsessov v trekhfaznom trekhurovnevom invertore napryazheniya [Calculation of electromagnetic processes in a three-phase three-level voltage inverter]. Mezhvuzovskiy sbornik nauchnykh trudov «Elektrotekhnicheskie sistemy i kompleksy». Vyp. 1 [Interuniversity proceedings of scientific papers «Electrical systems and complexes”. Issue 1]. Magnitogorsk: MGTU, 2010, p. 221.
15. Maklakov, A.S., Gasiyarov, V.R., Belyy, А.V. Energosberegayushchiy elektroprivod na baze dvukhzvennogo preobrazovatelya chastoty s aktivnym vypryamitelem i avtonomnym invertorom napryazheniya [Energy-saving electric drive on the basis of back-to-back converter]. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal, 2014, vol. 1, no. 1, pp. 23–30.
16. Khramshin, T.R., Krubtsov, D.S., Kornilov, G.P. Matematicheskaya model' aktivnogo vypryamitelya v nesimmetrichnykh rezhimakh raboty [Mathematical model of the active rectifier under unbalanced voltage operating conditions]. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal, 2014, vol. 1, no. 2, pp. 3–9.
17. Endrejat, F., Pillay, P. Resonance Overvoltages in Medium Voltage Multilevel Drive System. IEEE International Electric Machines & Drives Conference. Antalya, 2007, pp. 736–741.
18. Alawasa, K.M., Moamed, R.I., Xu, W. Active Mitigation of Subsynchronous Interactions Between PWM Voltage-Source Converters and Power Networks. IEEE Transactions on Power Electronics, 2014, vol. 29, no. 1, pp. 121–134.
19. Nikolaev, A.A., Denisevich, A.S., Bulanov, M.V. Issledovanie parallel'noy raboty avtomatizirovannykh elektroprivodov prokatnogo stana i dugovoy staleplavil'noy pechi [Investigation of parallel work of rolling mill’s automated electric drives and an electric arc furnace]. Vestnik IGEU, 2017, issue 3, pp. 59–69.
20. Nikolaev, A.A., Kornilov, G.P., Khramshin, T.R., Nikiforov, G., Mutallapova, F.F. Eksperimental'nye issledovaniya elektromagnitnoy sovmestimosti sovremennykh elektroprivodov v sisteme elektrosnabzheniya promyshlennykh predpriyatiy [Experimental studies of electromagnetic compatibility of modern electric drives in the power supply system of industrial enterprises]. Vestnik MGTU im. G.I. Nosova, 2016, vol. 14, no. 4, pp. 96–103.
21. Blooming, T.M., Carnovale, D.J. Application of IEEE STD 519-1992 Harmonic Limits. Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference, 2006, pp. 1–9.
22. Moeini, A., Zhao, H., Wang, S. A current reference based selective harmonic current mitigation PWM technique to improve the performance of cascaded H-bridge multilevel active rectifiers. IEEE Trans. Ind. Electronics, 2018, vol. 65, pp. 727–737.
23. Wu, X., Tan, G., Yao, G., Sun, C., Liu, G. A hybrid PWM strategy for three-level inverter with unbalanced DC links. IEEE J. Emerg. Sel. Top. Power Electron., 2018, vol. 6, pp. 1–15.
24. Steczek, M., Chudzik, P., Szelag, A. Combination of SHE- and SHM-PWM techniques for VSI DC-link current harmonics control in railway applications. IEEE Trans. Ind. Electron., 2017, vol. 64, pp. 7666–7678.
25. Zhou, K., Yang, Y., Blaabjerg, F., Wang, D. Optimal selective harmonic control for power harmonics mitigation. IEEE Trans. Ind. Electron., 2015, vol. 62, pp. 1220–1230.
26. Sharifzadeh, M., Vahedi, H., Portillo, R., Franquelo, L.G., Al-Haddad, K. Selective harmonic mitigation based self-elimination of triplen harmonics for single-phase five-level inverters. IEEE Trans. Power Electron., 2019, vol. 34, pp. 86–96.