Русская версия English version

Development and study of improved PWM algorithms of active rectifiers to achieve power quality in intra-factory electrical networks 6–35 kV

A.A. Nikolaev, M.V. Bulanov, A.S. Maklakov, I.G. Gilemov

Vestnik IGEU, 2023 issue 6, pp. 69—81

Download PDF

Abstract in English: 

Background. Currently, application of frequency converters with active front end rectifiers (FC-AFE) has become a standard solution for powerful adjustable AC drives with frequent dynamic modes. The advantages of these converters include the possibility of recuperation of braking energy to the supply network, as well as the best electromagnetic compatibility of electromagnetic capability (EMC) with the supply network as stated by the manufacturers of converter technology. This statement is only partly true, since FC-AFE manufacturers do not consider possible resonant phenomena in the 6–35 kV intra-factory distribution network caused by the interaction of reactive elements of the power supply system. When significant harmonics of the FC-AFE current are superimposed on the resonant region, dangerous voltage distortions of 6–35 kV may occur. Traditional methods of providing electromagnetic capability of FC-AFE in this case may not have the desired effect. Therefore, it is relevant to develop alternative technical solutions to ensure an acceptable level of electromagnetic capability of FC-AFE. One such solution is the use of advanced PWM algorithms in the FC-AFE adapting to resonant phenomena in the 6–35 kV intra-factory network.

Materials and methods. The materials for the study are the oscillograms of the currents and voltages at the input of the FC-AFE obtained experimentally and using mathematical modeling. Experimental data have been obtained on operating equipment with FC-AFE and on a special laboratory setup. When developing improved PWM algorithm of AFE, a well-known mathematical apparatus is used. It describes the dependence of individual harmonics on the number of switching and switching angles.

Results. The results obtained show the effectiveness of improved PWM algorithms in terms of reducing the effect of FC-AFE on the supply network and improving the quality of electricity in intra-factory networks of 6–35 kV. The results of the study are implemented at a number of metallurgical enterprises, thanks to which it is possible to reduce voltage distortions of 6–35 kV and increase the stability of the operation of sensitive electrical receivers.

Conclusions. The developed improved PWM algorithm of FC-AFE can significantly improve the quality of electricity in the in-house electrical networks of 6–35 kV without additional capital costs and installation of additional equipment. Based on the results obtained, it is recommended to use the developed PWM algorithms on the operating equipment with FC-AFE of industrial enterprises.

References in English: 

1. Maklakov, A.S., Nikolaev, A.A., Lin'kov, S.A., Lisovskaya, T.A. Vozmozhnosti kompensatsii reaktivnoy moshchnosti v seti posredstvom vysokomoshchnogo rekuperativnogo elektroprivoda peremennogo toka [Reactive Power Compensation Using a High-Power Regenerative AC Drive]. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2022, vol. 18, no. 3–4, pp. 65–74.

2. Pontt, J.A., Rodríguez, J.R., Liendo, A., Newman, P., Holtz, J., San Martin, J.M. Network-Friendly Low-Switching-Frequency Multipulse High-Power Three-Level PWM Rectifier. IEEE Transactions on Industrial Electronics, April 2009, vol. 56, no. 4, pp. 1254–1262.

3. Nikolaev, A.A., Khramshin, T.R., Afanas'ev, M.Yu. Issledovanie rezonansnykh yavleniy v raspredelitel'nykh elektricheskikh setyakh srednego napryazheniya sistem vnutrizavodskogo elektrosnabzheniya promyshlennykh predpriyatiy [Study of Resonant Phenomens in Medium Voltage Distribution Networks of Industrial Power Supply Systems]. Mashinostroenie: setevoy elektronnyy nauchnyy zhurnal, 2017, vol. 5, no. 4, pp. 51–62.

4. Pontt, J., Alzamora, G., Huerta, R., Becker, N. Resonances in a High-Power Active-Front-End Rectifier System. IEEE Trans. Ind. Electron., April 2005, vol. 52, no. 2, pp. 482-488.

5. Nikolaev, A.A., Afanas'ev, M.Yu., Gilemov, I.G., Bulanov, M.V. Povyshenie kachestva elektroenergii v sistemakh elektrosnabzheniya prokatnykh stanov s ispol'zovaniem preobrazovateley chastoty s aktivnymi vypryamitelyami za schet primeneniya spetsializirovannykh passivnykh fil'trov [Improvement of power quality in power supply systems of rolling mills using frequency converters with active rectifiers due to use of specialized passive filters]. Vestnik IGEU, 2023, issue 1, pp. 41–52.

6. Nikolaev, A.A., Gilemov, I.G., Bulanov, M.V., Afanas'ev, M.Yu., Shakhbieva, K.A., Laptova, V.A. Obespechenie elektromagnitnoy sovmestimosti moshchnykh elektroprivodov chetyrekhklet'evogo stana PPP KhP CherMK PAO «Severstal'» s pitayushchey set'yu 10 kV [Protection of the electromagnetic coating of electric drives of the four-stand mill PPP KHP CherMK PJSC “Severstal” with a 10 kV supply network]. Aktual'nye problemy sovremennoy nauki, tekhniki i obrazovaniya, 2021, vol. 12, no. 1, pp. 65–74.

7. Nikolaev, A.A., Gilemov, I.G., Bulanov, M.V. Otsenka vliyaniya rezhimov raboty elektroprivodov prokatnogo stana s PCh-AV na kachestvo napryazheniya pitayushchey seti 10 kV [Assessment of influence of rolling mill FC-AR electric drive operation mode on 10 kV supply network voltage quality]. Vestnik IGEU, 2021, issue 5, pp. 41–50.

8. Nikolaev, A.A., Gilemov, I.G. The Dynamic Operation Investigation of an Active Rectifier Control System with IGCT-Thyristor Switching Angle Table Selection Function. Proceedings – 2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM 2022). Sochi, 2022, pp. 492–497.

9. Nikolaev, A.A., Maklakov, A.S., Bulanov, M.V., Gilemov, I.G., Denisevich, A.S., Afanas'ev, M.Yu. Current Electromagnetic Compatibility Problems of High-Power Industrial Electric Drives with Active Front-End Rectifiers Connected to a 6–35 kV Power Grid: A Comprehensive Overview. Energies, 2023, vol. 16, no. 1, p. 293.

10. Nikolaev, A.A., Bulanov, M.V., Afanas'ev, M.Yu., Denisevich, A.S. Razrabotka usovershenstvovannogo algoritma ShIM aktivnogo vypryamitelya s adaptatsiey k rezonansnym yavleniyam vo vnutrizavodskoy seti [Development of an advanced PWM algorithm for active rectifier with adaptation to current resonances in internal power supply system]. Vestnik IGEU, 2018, issue 6, pp. 47–56.

11. O'Brien, K., Teichmann, R., Bernet, S. Active rectifier for medium voltage drive systems. Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, 2001, pp. 557–562.

12. Celanovic, N., Boroyevich, D. A fast space-vector modulation algorithm for multilevel three-phase converters. IEEE Trans. Ind. Appl., Mar. 2001, vol. 37, no. 2, pp. 637–641.

13. Khramshin, T.R., Krubtsov, D.S., Kornilov, G.P. Matematicheskaya model' silovoy skhemy glavnykh elektroprivodov prokatnykh stanov [A Mathematical Model of the Power Circuit of Main Electric Drives of Rolling Mills]. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal, 2014, vol. 1, no. 1, pp. 3–7.

14. Khramshin, T.R., Khramshin, R.R., Kornilov, G.P. Raschet elektromagnitnykh protsessov v trekhfaznom trekhurovnevom invertore napryazheniya [Calculation of electromagnetic processes in a three-phase three-level voltage inverter]. Mezhvuzovskiy sbornik nauchnykh trudov «Elektrotekhnicheskie sistemy i kompleksy». Vyp. 1 [Interuniversity proceedings of   scientific papers «Electrical systems and complexes”. Issue 1]. Magnitogorsk: MGTU, 2010, p. 221.

15. Maklakov, A.S., Gasiyarov, V.R., Belyy, А.V. Energosberegayushchiy elektroprivod na baze dvukhzvennogo preobrazovatelya chastoty s aktivnym vypryamitelem i avtonomnym invertorom napryazheniya [Energy-saving electric drive on the basis of back-to-back converter]. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal, 2014, vol. 1, no. 1, pp. 23–30.

16. Khramshin, T.R., Krubtsov, D.S., Kornilov, G.P. Matematicheskaya model' aktivnogo vypryamitelya v nesimmetrichnykh rezhimakh raboty [Mathematical model of the active rectifier under unbalanced voltage operating conditions]. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal, 2014, vol. 1, no. 2, pp. 3–9.

17. Endrejat, F., Pillay, P. Resonance Overvoltages in Medium Voltage Multilevel Drive System. IEEE International Electric Machines & Drives Conference. Antalya, 2007, pp. 736–741.

18. Alawasa, K.M., Moamed, R.I., Xu, W. Active Mitigation of Subsynchronous Interactions Between PWM Voltage-Source Converters and Power Networks. IEEE Transactions on Power Electronics, 2014, vol. 29, no. 1, pp. 121–134.

19. Nikolaev, A.A., Denisevich, A.S., Bulanov, M.V. Issledovanie parallel'noy raboty avtomatizirovannykh elektroprivodov prokatnogo stana i dugovoy staleplavil'noy pechi [Investigation of parallel work of rolling mill’s automated electric drives and an electric arc furnace]. Vestnik IGEU, 2017, issue 3, pp. 59–69.

20. Nikolaev, A.A., Kornilov, G.P., Khramshin, T.R., Nikiforov, G., Mutallapova, F.F. Eksperimental'nye issledovaniya elektromagnitnoy sovmestimosti sovremennykh elektroprivodov v sisteme elektrosnabzheniya promyshlennykh predpriyatiy [Experimental studies of electromagnetic compatibility of modern electric drives in the power supply system of industrial enterprises]. Vestnik MGTU im. G.I. Nosova, 2016, vol. 14, no. 4, pp. 96–103.

21. Blooming, T.M., Carnovale, D.J. Application of IEEE STD 519-1992 Harmonic Limits. Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference, 2006, pp. 1–9.

22. Moeini, A., Zhao, H., Wang, S. A current reference based selective harmonic current mitigation PWM technique to improve the performance of cascaded H-bridge multilevel active rectifiers. IEEE Trans. Ind. Electronics, 2018, vol. 65, pp. 727–737.

23. Wu, X., Tan, G., Yao, G., Sun, C., Liu, G. A hybrid PWM strategy for three-level inverter with unbalanced DC links. IEEE J. Emerg. Sel. Top. Power Electron., 2018, vol. 6, pp. 1–15.

24. Steczek, M., Chudzik, P., Szelag, A. Combination of SHE- and SHM-PWM techniques for VSI DC-link current harmonics control in railway applications. IEEE Trans. Ind. Electron., 2017, vol. 64, pp. 7666–7678.

25. Zhou, K., Yang, Y., Blaabjerg, F., Wang, D. Optimal selective harmonic control for power harmonics mitigation. IEEE Trans. Ind. Electron., 2015, vol. 62, pp. 1220–1230.

26. Sharifzadeh, M., Vahedi, H., Portillo, R., Franquelo, L.G., Al-Haddad, K. Selective harmonic mitigation based self-elimination of triplen harmonics for single-phase five-level inverters. IEEE Trans. Power Electron., 2019, vol. 34, pp. 86–96.

Key words in Russian: 
преобразователь частоты, активный выпрямитель, широтно-импульсная модуляция, электромагнитная совместимость, качество электроэнергии, резонанс токов, высшие гармоники
Key words in English: 
frequency converter, active rectifier, pulse width modulation, electromagnetic compatibility, power quality, current resonance, higher harmonics
The DOI index: 
10.17588/2072-2672.2023.6.069-081
Downloads count: 
18