Русская версия English version

Development and verification of simulation model of heat transfer process through window unit with heat-reflecting screens

G.I. Parfenov, N.N. Smirnov, A.K. Sokolov, V.V. Tyutikov, S.N. Yarunin, N.N. Yarunina

Vestnik IGEU, 2023 issue 5, pp. 28—39

Download PDF

Abstract in English: 

Background. Window units account for the largest specific heat losses. The use of movable heat-reflecting screens and photovoltaic solar panels is of particular interest among the existing technologies to improve the thermal protection of windows. Despite the large number of scientific papers on this issue, which consider experimental laboratory studies and numerical simulation of heat transfer processes through window units, there is no data on the influence of the edge zones of a double-glazed window, as well as the areas of interface of the window profile and the light opening on the thermal processes that occur in these energy-saving units with screens. Vertical replacing of specific heat fluxes and temperature on the inner surface of the window unit strongly influences the correctness of determining the value of the minimum allowable temperature of the indoor air. Thus, the development and verification of models of the heat transfer process through a window unit with screens is an urgent task in the context of an indoor microclimate creation.

Materials and methods. Simulation numerical modeling is performed using the finite element method based on the fundamental laws of heat transfer. The authors have used the results of experimental studies of windows with heat-reflecting screens carried out in a certified climatic chamber.

Results. The authors have developed a two-dimensional simulation model of heat transfer through a window unit with heat-reflecting screens located in the partition wall of the climate chamber. The distribution of temperatures, air flow velocities, and reduced total thermal resistance along the height of a translucent structures has been studied. The adequacy of the proposed simulation model is confirmed by comparison with the results of the experiment in a certified laboratory, as well as data obtained by other authors and regulatory documentation.

Conclusions. The use of heat-reflecting screens in the window unit increases the resistance to heat transfer by 1,6–3,7 times depending on their number. A significant decrease in temperature in the edge zones of the double-glazed window is revealed. The use of the developed simulation model makes it possible to determine the application of heat-reflecting screens in windows for intermittent heating systems including the case of using pre-drying air technology for humid, wet, or normal operation modes of industrial premises.

References in English: 

1. Prima, L.V., Gorelov, M.V., Glazov, V.S., Fel'ker, E.K. Informatsionnaya baza dannykh po opticheskim i teplozashchitnym kharakteristikam stroitel'nykh materialov [Information database on optical and heat-shielding characteristics of building materials]. Trudy VIII Mezhdunarodnoy shkoly-seminara molodykh uchenykh i spetsialistov «Energosberezhenie – teoriya i praktika» [Proceedings of VIII international workshop of young scientists and specialists “Energy saving – theory and practice”]. Moscow: Izdatel'skiy dom MEI, 2016, pp. 165–170.

2. Bukhmirov, V.V., Prorokova, M.V. Vestnik IGEU, 2015, issue 4, pp. 5–10.

3. Savin, V.K. Stroitel'naya fizika: energoperenos, energoeffektivnost', energosberezhenie [Building physics: energy transfer, energy efficiency, energy saving]. Moscow: Lazur', 2005. 432 p.

4. Akhmyarov, T.A., Spiridonov, A.V., Shubin, I.L. Zhilishchnoe stroitel'stvo, 2015, no. 1, pp. 18–23.

5. Podkovyrina, K.A., Podkovyrin, V.S. Arkhitektura i dizayn, 2018, no. 1, pp. 46–51.

6. Nizovtsev, M.I., Terekhov, V.I. Problemy regional'noy energetiki, 2011, no. 1, pp. 60–76.

7. Smirnov, N.N. Sovershenstvovanie sistem po sozdaniyu dinamicheskogo mikroklimata dlya pomeshcheniy s energoeffektivnymi svetoprozrachnymi konstruktsiyami. Diss. … kand. tekhn. nauk [Improving systems for creating a dynamic microclimate for rooms with energy-efficient translucent structures. Cand. tech. sci. diss.]. Ivanovo, 2022. 333 p.

8. Zakharov, V.M., Smirnov, N.N., Lapateev, D.A., Trukhin, D.S., Yablokov, A.A., Kolosova, Yu.S. Mnogofunktsional'nyy energoeffektivnyy staven' [Multifunctional energy efficient shutter]. Patent RF, no. 154163, 2015.

9. Hashemi, A., Gage, S. Building Services Engineering Research and Technology, 2014, no. 35, pp. 6–22.

10. Silva, T., Vicente, R., Rodrigues, F., Samagaio, A., Cardoso, C.  Applied Thermal Engineering, 2015, no. 84, pp. 246–245.

11. Korepanov, E.V. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel'stvo, 2009, no. 7, pp. 44–52.

12. Korepanov, E.V. SOK, 2016, no. 12, pp. 1–12.

13. Varapaev, V.N., Golubev, S.S. Promyshlennoe i grazhdanskoe stroitel'stvo, 2018, no. 11, pp. 72–75.

14. Golubev, S.S. Vestnik MGSU, 2012, no. 12, pp. 47–52.

15. Gustavsen A., Kohler Ch., Arasteh D., Curcija D. Two-dimensional conduction and CFD simulations of heat transfer in window frame cavities. ASHRAE transactions, 2005, vol. 111, no. 1, pp. 587–598.

16. Gerlich, V., Sulovská, K., Zálešák, M., Measurement, 2013, vol. 46, no. 6, pp. 2003–2012.

17. Kozłowski, M., Respondek, Z., Wiśniowski, M., Cornik, D., Zemła, K. Applied Sciences, 2023, vol. 13, no. 3, pp. 1269–1278.

18. Parfenov, G.I., Smirnov, N.N., Tyutikov, V.V., Zakharov, V.M., Trukhin, I.S., Yablokov, A.A. Programma dlya dvukhmernogo modelirovaniya protsessa teploperedachi cherez okonnyy blok s ekranami [Program for two-dimensional simulation of the process of heat transfer through a window unit with screens]. Certificate RF, no. 2022682827, 2022.

 

Key words in Russian: 
имитационное моделирование, оконный блок с теплоотражающими экранами, микроклимат, приведенное сопротивление теплопередаче, теплообмен, воздушная прослойка
Key words in English: 
simulation, window unit with heat-reflecting screens, microclimate, reduced total thermal resistance, heat transfer, air gap
The DOI index: 
10.17588/2072-2672.2023.5.028-039
Downloads count: 
14