Русская версия English version

Application of Pontryagin principle for optimal shutdown of a nuclear power reactor

V.C. Semenov, N.B. Ivanova, I.I. Chernyaeva

Vestnik IGEU, 2024 issue 3, pp. 71—77

Download PDF

Abstract in English: 

Background. The theory of optimal control is based on two approaches, the dynamic programming method (Bellman equation) and Pontryagin maximum principle. Pontryagin maximum principle is applied in the physics of nuclear reactors when optimizing various transient processes. The mathematical justification of this theory is based on the elements of convex analysis, which is not used by physicists and engineers, so the physical issues are less studied in scientific literature.

Materials and methods. The subject of the study is a nuclear power reactor of the WWER type. The problem of minimizing its shutdown time, bypassing the iodine pit is solved and it is possible to start up the reactor at any moment after its shutdown. Analytical and numerical methods are used.

Results. The paper considers an example of applying the maximum principle for optimal control of the process of shutting down a nuclear reactor bypassing the iodine pit. A physical mathematical model of the Pontryagin principle is formulated. The process of optimal control of reactor shutdown for large and small reactivity margins is justified and calculated.

Conclusions. Pontryagin principle does not contain an algorithm to find an optimization process; the stages of the process must be selected based on physical considerations, but these stages must satisfy the specified principle. Based on the Pontryagin principle, the results of the study make it possible to draw up a step-by-step action plan when shutting down a WWER-type reactor with any value of the reactivity margin and its switching is possible at any time after the transition process, which avoids downtime. The proposed plan can be used both in mathematical modeling of transient processes in a reactor and in reactor control systems to improve its controllability and, consequently, to improve safety.

References in English: 
  1. Rudik, A.P. Yadernye reaktory i printsip Pontryagina [Nuclear reactors and the Pontryagin principle]. Moscow: Atomizdat, 1971.
  2. Rudik, A.P. Ksenonovye perekhodnye protsessy v yadernykh reaktorakh [Xenon transients in nuclear reactors]. Moscow: Atomizdat, 1974.
  3. Rudik, A.P. Fizicheskie osnovy yadernykh reaktorov [Physical foundations of nuclear reactors]. Moscow: Atomizdat, 1979.
  4. Desyatov, V.M., Pavlov, V.I., Simonov, V.D. Raschetnoe issledovanie optimal'nogo rezhima snizheniya moshchnosti reaktora [Computational study of the optimal mode of reactor power reduction]. Atomnaya energiya, 1976, vol. 40, issue 6, p. 464.
  5. Pontryagin, L.S., Boltyanskiy, V.G., Gamkrelidze, R.V., Mishchenko, E.F. Matematicheskaya teoriya optimal'nykh protsessov [Mathematical theory of optimal processes]. Moscow: Nauka, 1983.
  6. Pontryagin, L.S. Printsip maksimuma [Maximum principle]. Moscow: Fond matematicheskogo obrazovaniya i prosveshcheniya, 1998.
  7. Boltyanskiy, V.G. Matematicheskie metody optimal'nogo upravleniya [Mathematical methods of optimal control]. Moscow: Nauka, 1969.
  8. Bushuev, A.Yu. Vvedenie v optimal'noe upravlenie [Introduction to optimal control]. Moscow: Izdatel'stvo MGTU imeni N.E. Baumana, 2014.
  9. Pupkova, K.A., Egupova, N.D. (ed.) Metody klassicheskoy i sovremennoy teorii avtomaticheskogo upravleniya [Methods of classical and modern theory of automatic control]. Moscow: Izdatel'stvo MGTU im. N.E. Baumana, 2004.
  10. Arutyunov, A.V., Magaril-Il'yaev, G.G., Tikhomirov, V.M. Printsip maksimuma Pontryagina [Pontryagin's maximum principle]. Moscow: Faktorial Press, 2006.
  11. Dikusar, V.V., Milyutin, A.A. Kachestvennye i chislennye metody v printsipe maksimuma [Qualitative and numerical methods are in principle maximum]. Moscow: Nauka, 1989.
  12. Milyutin, A.A. Printsip maksimuma v obshchey zadache optimal'nogo upravleniya [The maximum principle in the general problem of optimal control]. Moscow: Fizmatlit, 2001.
  13. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V. Optimal'noe upravlenie [Optimal Control]. Moscow: FIZMATLIT, 2005.
  14. Vasil'ev, F.P. Metody optimizatsii [Optimization methods]. Moscow: Faktorial Press, 2002.
  15. Bagrov, V.G., Belov, V.V., Zadorozhnyy, V.N., Trifonov, A.Yu. Metody matematicheskoy fiziki: I. Osnovy kompleksnogo analiza. II. Elementy variatsionnogo ischisleniya i teorii obobshchennykh funktsiy [Methods of mathematical physics: I. Fundamentals of complex analysis. II. Elements of the calculus of variations and the theory of generalized functions]. Tomsk: Izdatel'stvo NTL, 2002.
  16. Kalitkin, N.N. Chislennye metody [Numerical methods]. Saint-Petersburg: BKhV-Peterburg, 2011.
Key words in Russian: 
энергетический ядерный реактор, оптимальное управление ядерным реактором, математическая модель, принцип максимума Понтрягина, йодная яма, отравление реактора ксеноном
Key words in English: 
nuclear power reactor, optimal control of a nuclear reactor, mathematical model, Pontryagin maximum principle, iodine pit, xenon poisoning of the reactor, step-by-step action plan
The DOI index: 
10.17588/2072-2672.2024.3.071-077
Downloads count: 
7