Русская версия English version

Methodology of matrix modeling of multicomponent multiflow multi-stage energy complexes

A.E. Barochkin

Vestnik IGEU, 2024 issue 3, pp. 64—70

Download PDF

Abstract in English: 
Background. Traditionally, heat transfer problems are solved in relation to two-flow systems in which heat exchange is carried out between hot and cold coolants. However, along with two-flow systems, there are often multiflow systems in which the number of coolant flows is three or more. In addition, each energy carrier stream may consist of several components, and the installation may include several stages. Thus, the development of universal approaches and methods for modeling, calculation, and optimization of multi-component multiflow multistage energy complexes within the framework of a unified methodology is an urgent scientific and practical task.
Materials and methods. A methodology of matrix formalization of modeling heat and mass transfer processes is based on methods and approaches of matrix description of heat and mass transfer systems in energy complexes.
Results. The approaches and methods of modeling energy power installations are summarized. Within the framework of the matrix description methodology, the rules and approaches to the development of models of heat and mass transfer processes are formulated in relation to multicomponent multiflow multistage energy complexes. The authors have proposed a solution to the inverse problems with and without considering a phase transition in coolants.
Conclusions. Analysis of formulated and solved problems within the framework of the proposed methodology allows us to recommend the use of methods and approaches of matrix modeling of equipment to solve direct and inverse problems for multicomponent multiflow multistage energy complexes for various purposes.
References in English: 

1. Brodov, Yu.M., Savel'ev, R.Z. Kondensatsionnye ustanovki parovykh turbin [Condensing installations of steam turbines]. Moscow: Energoatomizdat, 1994. 288 p.

2. Ledukhovskiy, G.V., Pospelov, A.A. Energeticheskie kharakteristiki oborudovaniya TES [Energy characteristics of thermal power plant equipment]. Ivanovo, 2014. 232 p.

3. Ryzhkin, V.Ya. Teplovye elektricheskie stantsii [Thermal power plants]. Moscow: Energoatomizdat, 1987. 328 p.

4. Martynenko, O.G. (red.) Spravochnik po teploobmennikam: v 2 t., t. 1 [Handbook of heat exchangers in 2 vols., vol. 1]. Moscow: Energoatomizdat, 1987. 560 p.

5. Nazmeev, Yu.G., Lavygin, V.M. Teploobmennye apparaty TES [Heat exchange devices of thermal power plants]. Moscow: Energoatomizdat, 1998. 288 p.

6. Isachenko, V.P. Teploobmen pri kondensatsii [Heat transfer during condensation]. Moscow: Energiya, 1977. 240 p.

7. Isachenko, V.P. Osipova, V.A., Sukomel, A.S. Teploperedacha [Heat transfer]. Moscow: Energoatomizdat, 1981. 416 p.

8. Zhukov, V.P., Barochkin, E.V. Sistemnyy analiz energeticheskikh teplomassoobmennykh ustanovok [System analysis of energy heat and mass transfer installations]. Ivanovo, 2009. 176 p.

9. Bazhan, P.I., Kanevets, G.M., Seliverstov, V.M. Spravochnik po teploobmennym apparatam [Handbook on heat exchangers]. Moscow: Mashinostroenie, 1989. 366 p.

10. Berman, S.S., Mikheeva, I.M. Raschet teploobmennykh apparatov turboustanovok [Calculation of heat exchangers of turbine units]. Moscow: Energiya, 1973. 320 p.

11. Zhukov, V.P., Barochkin, A.E., Bobrova, M.S., Belyakov, A.N., Shuvalov, S.I. Matrichnyy metod resheniya obratnoy zadachi teploperedachi v teploobmennykh apparatakh [Matrix method for solving the inverse problem of heat transfer in heat exchangers]. Vestnik IGEU, 2021, issue 2, pp. 62–69.

12. Zhukov, V.P., Barochkin, E.V., Barochkin, A.E. Analiz mnogopotochnykh teplomassoobmennykh sistem [Analysis of multi-flow heat and mass exchange systems]. Vologda: Infra-Inzheneriya, 2024. 160 p.

13. Barochkin, A.E. Matrichnyy metod pri modelirovanii mnogokomponentnykh i mnogopotochnykh energeticheskikh sistem i ustanovok TES [Matrix method for modeling multi-component and multi-flow energy systems and thermal power plant installations]. Problemy regional'noy energetiki, 2021, no. 4(52), pp. 59–67.

14. Barochkin, A.E. Matrichnyy metod resheniya obratnoy zadachi teploperedachi v kontaktnykh apparatakh s uchetom fazovogo perekhoda v teplonositelyakh [Matrix method for solving the inverse problem of heat transfer in contact devices taking into account the phase transition in coolants]. Vestnik IGEU, 2021, issue 5, pp. 68–75.

15. Barochkin, A.E. Matrichnoe modelirovanie i optimizatsiya paroturbinnykh ustanovok [Matrix modeling and optimization of steam turbine plants]. Energosberezhenie i vodopodgotovka, 2022, no. 6(140), pp. 52–59.

16. Ozhegov, S.I. Slovar' russkogo yazyka [Dictionary of the Russian language]. Moscow: Sovetskaya entsiklopediya, 1973. 846 p.

Key words in Russian: 
методология матричного моделирования, многокомпонентные многопоточные многоступенчатые энергетические комплексы, матричные модели, матричная формализация, баланс энергии, баланс массы, обратная задача, прямая задача
Key words in English: 
methodology of matrix modeling, multicomponent multiflow multistage energy complexes, matrix models, matrix formalization, energy balance, mass balance, inverse problem, direct problem
The DOI index: 
10.17588/2072-2672.2024.3.064-070
Downloads count: 
7