Русская версия English version

Overmodulation in three-phase electronic key bridges of the converter-electric motor system

A.V. Saushev, I.V. Belousov, V.F. Samoseiko

Vestnik IGEU, 2024 issue 4, pp. 87—94

Download PDF

Abstract in English: 

Background. To ensure the operability of a circuit with three-phase pulse width modulation, it is necessary to meet the conditions of operability. One of the most important conditions is to exclude the phenomenon of overmodulation. To obtain the boundary values of the variables that determine the quality of modulation, it is necessary to study the phenomenon of overmodulation in various modes of operation of a three-phase converter.

Materials and methods. New modulating functions with constraints have been introduced to analyze the phenomena associated with overmodulation. Methods of analysis of electrical circuits have been used.

Results. The processes of three-phase pulse width modulation in the overmodulation mode have been studied. An assessment of the effect of overmodulation on the variables that determine the quality of the modulation process has been made. The boundary amplitude coefficient of a three-phase bridge has been determined, at which a three-phase overmodulation mode occurs.

Conclusions. The results can be used to develop algorithms for controlling frequency converters in frequency control systems of electric drives.

References in English: 

1. Madhavi, R., Harinath, C. Investigation of various space vector pwm techniques for inverter. International Journal of Engineering Research and Management (IJERM), 2014, vol. 1, no. 7, pp. 162–165.

2. Klimov, V. Chastotno-energeticheskie parametry shim-invertorov sistem bespereboynogo pitaniya [Frequency-energy parameters of PWM inverters of uninterruptible power supply systems]. Silovaya elektronika, 2009, no. 22, pp. 66–71.

3. Hava, A.M., Çetin, N.O. A Generalized Scalar PWM Approach with Easy Implementation Features for Three-Phase, Three-Wire Voltage-Source Inverters. IEEE Transactions on Power Electronics, 2010, vol. 26, no. 5, pp. 1385–1395. DOI: 10.1109/TPEL.2010.2081689.

4. Dmitriev, B.F., Galushin, S.Ya., Likhomanov, A.M., Rozov, A.Yu. Trekhfaznaya sinusoidal'naya modifitsirovannaya shirotno-impul'snaya modulyatsiya pervogo roda v avtonomnykh invertorakh [Three-phase sinusoidal modified pulse width modulation of the first kind in autonomous inverters]. Morskoy vestnik, 2017, vol. 61, no. 1, pp. 69–72.

5. Mao, X., Ayyanar, R., Krishnamurthy, H.K. Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis. IEEE Transactions on Power Electronics, 2009, vol. 24, no. 4, pp. 991–1001. DOI: 10.1109/TPEL.2008.2009635.

6. Belousov, I.V., Samoseiko, V.F., Saushev, A.V. Optimal'naya shirotno-impul'snaya modulyatsiya v sisteme upravleniya elektroprivodom [Optimal pulse width modulation in an electric drive control system]. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova, 2022, no. 3(14), pp. 463–471. DOI: 10.21821/2309-5180-2022-14-3-463-471.

7. Samoseiko, V.F., Belousov, I.V., Saushev, A.V. Optimized single-phase pulse-width modulation. International Russian Automation Conference, RusAutoCon 2018, article No. 8501699. DOI: 10.1109/RUSAUTOCON.2018.8501699.

8. Samoseiko, V.F., Belousov, I.V., Saushev, A.V. Optimal double-halfbridge pulse width modulation by current-dispersion criterion. 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives, IWED 2019. Proceedings, 2019, pp. 8664344.

9. Gus'kov, V.O., Lavin, A.V. Sravnitel'nyy analiz matematicheskikh opisaniy i metodov shirotno-impul'snoy modulyatsii [Comparative analysis of mathematical descriptions and methods of pulse-width modulation]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Morskaya tekhnika i tekhnologiya, 2023, no. 3, pp. 74–81. DOI: 10.24143/2073-1574-2023-3-74-81.

10. Hava, A.M., Çetin, N.O. A Generalized Scalar PWM Approach with Easy Implementation Features for Three-Phase, Three-Wire Voltage-Source Inverters. IEEE Transactions on Power Electronics, 2011, vol. 26, no. 5, pp. 1385–1395. DOI: 10.1109/TPEL.2010.2081689.

11. Tan, G., Deng, Q., Liu, Z. An optimized SVPWM strategy for five-level active NPC (5L-ANPC) converter. IEEE Transactions on power electronics, 2013, vol. 29, no. 1, pp. 386–395. DOI: 10.1109/TPEL.2013.2248172.

12. Belousov, I.V., Samoseiko, V.F., Saushev, A.V. Otsenka fil'truyushchikh svoystv asinkhronnogo elektroprivoda s shirotno-impul'snoy modulyatsiey [Assessment of filtering properties of asynchronous electric drive with pulse width modulation]. XV International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry “State and Prospects for the Development of Agribusiness – INTERAGROMASH 2022”. Rostov-on-Don, 2022, vol. 363, pp. 1–8. DOI: 10.1051/e3sconf/202236301025.

13. Bakhovtsev, I.A., Zinov'ev, G.S. Obobshchennyy analiz vykhodnoy energii mnogofaznykh mnogourovnevykh invertorov napryazheniya s shirotno-impul'snoy modulyatsiey [Generalized analysis of the output energy of multiphase multilevel voltage inverters with pulse width modulation]. Elektrichestvo, 2016, no. 4, pp. 26–33.

14. Chaplygin, E.E., Khukhtikov, S.V. Shirotno-impul'snaya modulyatsiya s passivnoy fazoy v trekhfaznykh invertorakh napryazheniya [Pulse width modulation with passive phase in three–phase voltage inverters]. Elektrichestvo, 2011, no. 5, pp. 53–61.

15. Nayeemuddin, M., Rao, C. Space Vector Based High Performance Discontinuous Pulse Width Modulation Algorithms for VSI Fed AC Drive. Innovative Systems Design and Engineering (IJSR), 2016, vol. 5, no. 7, pp. 203–208.

16. Samoseiko, V.F., Belousov, I.V., Saushev, A.V. Optimal Pulse-Width Modulation with Three Bridges on Criterion of Power Losses at Load. International Russian Industrial Engineering, ICIE, 2019. International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019. Sochi, March 25–29, 2019. Sochi, 2019, pp. 8743011. DOI: 10.1109/ICIEAM.2019.8743011.

17. Vasil'ev, B.Yu. Obespechenie rezhima peremodulyatsii i povyshenie effektivnosti preobrazovaniya energii v silovykh avtonomnykh invertorakh elektroprivodov [Ensuring the modulation mode and increasing the efficiency of energy conversion in power autonomous inverters of electric drives]. Elektrichestvo, 2015, no. 6, pp. 47–55.

18. Graditi, G., Griva, G., Oleschuk, V. Overmodulation control of five-phase inverters with full DC-bus voltage utilization. SPEEDAM, 2010, pp. 1150–1155.

19. Holtz, J., Lotzkat, W., Khambadkone, A.M. On Continuous Control of PWM Inverters in the Overmodulation Range Including the Six-Step Mode. IEEE Transactions on Power Electronics, 1993, vol. 8, no. 4, pp. 546–553.

20. Kerkman, R.J., Leggate, D., Seibel, B.J., Rowan, T.M. Operation of PWM voltage source inverters in the overmodulation region. IEEE Transactions on Industrial Electronics, 1996, vol. 43, no. 1, pp. 132–141.

Key words in Russian: 
трехфазная широтно-импульсная модуляция, система преобразователь–электродвигатель, дисперсия тока, перемодуляция, показатели качества модуляции
Key words in English: 
three-phase pulse width modulation, converter-electric motor system, current dispersion, overmodulation, modulation quality indicators
The DOI index: 
10.17588/2072-2672.2024.4.087-094
Downloads count: 
14