Русская версия English version

Method of complex determination of the dependence of the thermophysical characteristics of metal on temperature by solving the inverse problem of thermal conductivity

A.K. Sokolov, V.P. Zhukov, N.N. Smirnov, N.N. Yarunina

Vestnik IGEU, 2024 issue 6, pp. 23—30

Download PDF

Abstract in English: 

Background. The temperature fields of materials used in thermal power engineering affect the intensity of heat transfer, the quality of safety assessment of equipment and technical and economic indicators of installations. The accuracy of calculating temperature fields in materials depends significantly on the reliability of the values of the thermophysical characteristics (TC) of materials: thermal diffusivity a, m2/s, thermal conductivity coefficient l, W/(m×K), and heat capacity c, J/(m3×K). Methods to determine thermophysical characteristics are constantly being improved to reduce the labor intensity of a thermophysical experiment, simplify the procedures of solving the inverse problem of heat conductivity for complex determination of several thermophysical characteristics. In this regard, the development and study of more effective methods remain relevant.

Materials and methods. The thermophysical characteristics of materials are determined by solving the inverse problem of thermal conductivity using analytical, numerical, or numerical-analytical methods of the temperature field obtained as a result of a physical experiment.

Results. The authors have proposed a numerical and analytical method. Based on the results of one experiment, it allows us to determine the dependence of the metal TC: l, c and a on the temperature. The calculation of thermophysical characteristics is performed considering the surface temperatures of an unlimited plate Т(R,ti), T(x=0,ti) with a thickness of 2R, symmetrically heated by constant heat fluxes q, W/m2. Thermophysical characteristics are determined by simple algebraic formulas derived from the heat balance equations for each time interval Dti+1 = ti+1 − ti. A numerical experiment is conducted to assess the complexity and error of the method. The temperatures Т(R,ti) and T(x=0,ti) of the plate R = 0,02 m have been calculated by the finite difference method at q = 60000 W/m2 for 30 time points 0 ≤ t ≤ 2250 s. The initial dependencies l(T) and a(T) are described by polygonal lines. The relative errors of l(Tm) have not exceeded 1 %, and the errors of a(Tm,int) and c(Tm,int) have exceeded 2 % only in the area of changing the sign of the first-order derivatives of the functions a(Tm,int) and c(Tm,int).

Conclusions. The proposed method allows us to calculate the dependence of TC on temperature using simple algebraic formulas based on the results of one experiment

References in English: 

1.  Yur'ev, B.P., Gol'tsev, V.A., Matyukhin, V.I., Sheshukov, O.Yu. Opredelenie teplofizicheskikh svoystv materialov metallurgicheskogo proizvodstva [Determination of thermophysical properties of materials of metallurgical production]. Ekaterinburg: OOO «UIPTs», 2014. 180 p.

2.  Fokin, V.M., Chernyshev, V.N. Nerazrushayushchiy kontrol' teplofizicheskikh kharakteristik stroitel'nykh materialov [Non-destructive testing of thermophysical characteristics of building materials]. Moscow: Izdatel'stvo «Mashinostroenie−1», 2004. 212 р.

3.  Zhukov, N.P., Maynikova, N.F. Mnogomodel'nye metody i sredstva nerazrushayushchego kontrolya teplofizicheskikh svoystv materialov i izdeliy [Multi-model methods and means of non-destructive testing of thermophysical properties of materials and products]. Moscow: Izdatel'stvo «Mashinostroenie−1», 2004. 288 p.

4. Grysa, Kr. Inverse heat conduction problems. Heat Conduction − Basic Research. Intech Open. Available at: https:// www.intechopen.com/books/heat-conduction-basic-research/inverse-heat-con....

5. Savija, I., Culham, J.R., Yovanovich, М.М., Marotta, E.E. Review of thermal conductance models for joints incorporating enhancement materials. Journal of Thermophysics and Heat Transfer, 2003, vol. 17, no. 1, pp. 43−52.

6. Dongliang Zhao, Xin Qian, Xiaokun Gu, Saad Ayub Jajja, Ronggui Yang. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427. https://arxiv.org/ftp/arxiv/papers/1605/1605.08469.pdf

7. Sokolov, A.K. Metod opredeleniya temperaturoprovodnosti i koeffitsienta teploprovodnosti po temperaturam poverkhnosti plastiny kak poluogranichennogo tela [Method to determine thermal diffusivity and thermal conductivity coefficient based on surface temperatures of a plate as a semi-bounded body]. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya Metallurgiya, 2022, vol. 65, no. 1, pp. 57–65. https://doi.org/10.17073/0368-0797-2022-1-57-65

8. Weizhen Pan, Fajun Yi, Songhe Meng. Temperature-dependent thermal properties measurement by solvinginverse heat transfer problems. Measurement Science and Technology, 2016, vol. 27, no. 7. Article 075005.

9. Rostamian, M., Shahrezaee, A. Application of meshless methods for solving an inverse heat conduction problem. European Journal of Pure and Applied Mathematics, 2016, vol. 9, no. 1, pp. 64−83.

10. Monde, M., Kosaka, M., Mitsutake, Y. Simple measurement of thermal diffusivity and thermal conductivity using inverse solution for one-dimensional heat conduction. International Journal of Heat and Mass Transfer, 2010, vol. 53(23), no. 11, pp. 5343−5349.

11. Kosaka, M., Monde, M. Simultaneous measurement of thermal di_usivity and thermal conductivity by means of inverse solution for one-dimensional heat conduction (anisotropic thermal properties of CFRP for FCEV). Int. J. Thermophys, 2015, vol. 36, pp. 2590–2598.

12. Alaili, K., Ordonez-Miranda, J., Ezzahri, Y. Simultaneous determination of thermal diffusivity and thermal conductivity of a thin layer using double modulated thermal excitations. Journal of Applied Physics, 2019, vol. 126(14), no. 10. Article 145103.

13. Cheng-Hung Huang, Chu-Ya Huang. An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue. Applied Mathematical Modelling, 2007, vol. 31(9), no. 9, pp. 1785−1797.

14. Eremin, A.V., Stefanyuk, E.V., Abisheva, L.S. Identifikatsiya istochnika tepla na osnove analiticheskogo resheniya zadachi teploprovodnosti [Identification of a heat source based on an analytical solution of the heat conduction problem]. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2016, vol. 59, no. 5, pp. 339–346.

15. Nedin, R., Nesterov, S., Vatulyan, A. On reconstruction of thermalphysic characteristics of functionally graded hollow cylinder. Appl. Math. Model, 2016, vol. 40, issue 4, pp. 2711–2719. DOI: https://doi.org/10.1016/j.apm.2015.09.078.

16. Nedin, R., Nesterov, S., Vatulyan, A. Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials. International Journal of Heat and Mass Transfer, 2016, vol. 102, pp. 213–218. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.027

17. Vatul'yan, A.O., Nesterov, S.A. Ob osobennostyakh resheniya koeffitsientnoy obratnoy zadachi teploprovodnosti dlya dvusostavnogo sloya [On the features of the solution of coefficient inverse problem of heat conductivity for a two-component layer]. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 2019, vol. 19, issue 4, pp. 409–423. https://doi.org/10.18500/1816-9791-2019-19-4-409-423

18. Sokolov, A.K. Determination of Thermal Diffusivity of Material by the Numerical-Analytical Model of a Semi-Bounded Body. Steel in Translation, 2020, vol. 50, no. 6, pp. 391–396.

19. Sokolov, A.K. Reshenie obratnoy zadachi teploprovodnosti dlya simmetrichnogo temperaturnogo polya plastiny, approksimirovannogo stepennymi funktsiyami [Solution of the inverse problem of heat conduction for a symmetric temperature field of a plate approximated by power functions]. Izvestiya Akademii nauk. Energetika, 2017, no. 6, pp. 108–118.

20. Sokolov, A.K. Opredelenie temperaturoprovodnosti materiala po trem tochkam nesimmetrichnogo temperaturnogo polya plastiny chislenno-analiticheskim metodom [Determination of thermal diffusivity of material at three points of an asymmetric temperature field of a plate by a numerical-analytical method]. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 11, pp. 35–40.

21. Sokolov, A.K. Matematicheskoe modelirovanie nagreva metalla v gazovykh pechakh [Mathematical modeling of metal heating in gas furnaces]. Ivanovo, 2011. 396 p.

22. Varfolomeev, B.G., Zhukov, N.P., Muromtsev, D.Yu., Selivanova, Z.M. Sposob nerazrushayushchego kontrolya teplofizicheskikh kharakteristik izdeliy iz metallopolimerov [Method of non-destructive testing of thermal characteristics of metal-polymer products]. Patent RF, no. 2247363, 2005.

23. Sokolov, A.K., Yakubina, O.A. Sposob opredeleniya temperaturoprovodnosti i koeffitsienta teploprovodnosti [Method to determine thermal diffusivity and thermal conductivity coefficient]. Patent RF, no. 2785084, 2022.

Key words in Russian: 
обратная задача теплопроводности, температуропроводность, коэффициент теплопроводности, теплоемкость, квазистационарный режим, численный эксперимент
Key words in English: 
inverse problem of thermal conductivity, thermal conductivity, coefficient of thermal conductivity, heat capacity, quasi-stationary mode, numerical experiment
The DOI index: 
10.17588/2072-2672.2024.6.023-030
Downloads count: 
16